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Bistability

A system is bistable if it has two stable steady-states separated by an unstable state.

From Wikipedia.
The threshold ODE: y 1 � �ry

�
1� y

M

��
1� y

T

�
.

In the threshold model for population growth, there are three steady-states, 0   T   M:

M � carrying capacity (stable),

T � extinction threshold (unstable),

0 � extinct (stable).
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Types of bistability

The lac operon exhibits bistability.

The expression level of the lac operon genes are either almost zero (“basal levels”), or very
high (thousands of times higher). There’s no “inbetween” state.

The exact level depends on the concentration of intracellular lactose. Let’s denote this
parameter by p.

Now, let’s “tune” this parameter. The result might look like the graph on the left.

This is reversible bistability. In other situations, it may be irreversible (at right).
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Hysteresis

For reversible bistability, the up-threshold L2 of p is higher than the down-threshold L1 of p.

This is hysteresis: a dependence of a state on its current state and past state.

Thermostat example

Consider a home thermostat.

If the temperature is T   66 (e.g., in winter), the heat is on.

If the temperature is T ¡ 76 (e.g., in summer), the AC is on.

If 66   T   77, then we don’t know whether it’s spring or fall.
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Hysteresis and the lac operon
If lactose levels are medium, then the state of the operon depends on whether or not a cell
was grown in a lactose-rich environment.

Lac operon example

Let rLs � concentration of intracellular lactose.

If rLs   L1, the operon is OFF.

If rLs ¡ L2, the operon is ON.

If L1   rLs   L2, the operon might be ON or OFF.

In the region of bistability pL1, L2q, one can find both induced and un-induced cells.
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An ODE model of the lac operon

The Boolean models we’ve seen are too simple to capture bistability.

We will derive two different ODE models of the lac operon that exhibit bistability: one with
3 variables, and another with 5 variables.

These ODE models were designed using Michaelis–Menten equations from mass-action
kinetics which we learned about earlier.

They will also incorporate other features, such as:

dilution of protein concentration due to bacterial growth

degredation (decay) of protein concentration

time delays

After that, we’ll see how bistability can indeed be captured by a Boolean model.

In general, bistable systems tend to have positive feedback loops (in their “wiring diagrams”)
or double-negative feedback loops (=positive feedback).
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Modeling dilution in protein concentration due to bacterial growth

E. coli grows fast! It can double in 20 minutes. Thus, ODE models involving concentration
can’t assume volume is constant.

Let’s define:

V � average volume of an E. coli cell.

x � number of molecules of protein X in that cell.

Assumptions:

cell volume increases exponentially in time: dV
dt
� µV .

degradation of X is exponential: dx
dt
� �βx .

The concentration of x is rxs � x
V

. The derivative of this is (by the quotient rule):

drxs

dt
�

�
x 1V � V 1x

� 1

V 2
�

�
� βxV � µVx

� 1

V 2
� �

�
β � µ

� x

V
� �pβ � µqrxs.
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Modeling of lactose repressor dynamics

Assumptions

Lac repressor protein is produced at a constant rate.

Laws of mass-action kinetics.

Repressor binds to allolactose:

R � nA
K1ÝÝáâÝÝ

1
RAn

drRAns

dt
� K1rRsrAs

n � rRAns

Assume the reaction is at equilibrium: drRAns
dt

� 0, and so K1 �
rRAns
rRsrAsn

.

The repressor protein binds to the operator region if there is no allolactose:

O � R
K2ÝÝáâÝÝ

1
OR

drORs

dt
� K2rOsrRs � rORs.

Assume the reaction is at equilibrium: drORs
dt

� 0, and so K2 �
rORs
rOsrRs

.
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Modeling of lactose repressor dynamics

Let Otot � total operator concentration (a constant). Then, using K2 �
rORs
rOsrRs

,

Otot � rOs � rORs � rOs � K2rOsrRs � rOsp1� K2rRsq .

Therefore, rOs
Otot

� 1
1�K2rRs

. “Proportion of free (unbounded) operator sites.”

Let Rtot be total concentration of the repressor protein (constant):

Rtot � rRs � rORs � rRAns

Assume only a few molecules of operator sites per cell: rORs ! max
 
rRs, rRAns

(
:

Rtot � rRs � rRAns � rRs � K1rRsrAs
n

Eliminating rRAns, we get rRs �
Rtot

1� K1rAsn
.

Now, the proportion of free operator sites is:

rOs

Otot
�

1

1� K2rRs
�

1

1� K2p
Rtot

1�K1rAsn
q
�

1� K1rAsn

1� K1rAsn
�

1� K1rAsn

K � K1rAsnloooooomoooooon
:�f prAsq

,

where K � 1� K2Rtot .
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Modeling of lactose repressor dynamics

Summary

The proportion of free operator sites is

rOs

Otot
�

1� K1rAsn

K � K1rAsnloooooomoooooon
:�f prAsq

, where K � 1� K2Rtot .

Remarks

The function f prAsq is (almost) a Hill function of coefficient n.

f prAs � 0q � 1
K
¡ 0 “basal level of gene expression.”

f is increasing in rAs, when rAs ¥ 0.

lim
rAsÑ8

f prAsq � 1 “with lots of allolactose, gene expression level is max’ed.”
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Modeling time-delays

The production of mRNA from DNA via transcription is not instantaneous; suppose it takes
time τ ¡ 0.

Thus, the production rate of mRNA is not a function of allolactose at time t, but rather at
time t � τ .

Suppose protein P decays exponentially, and its concentration is pptq.

dp

dt
� �µp ùñ

» t

t�τ

dp

p
� �µ

» t

t�τ
dt .

Integrating yields

ln pptq
���t
t�τ

� �µt
���t
t�τ

dt � ln
pptq

ppt � τq
� �µrt � pt � τqs � �µτ.

Exponentiating both sides yields pptq
ppt�τq

� e�µτ , and so

pptq � e�µτppt � τq.
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A 3-variable ODE model of the lac operon

Consider the following 3 quantities, which represent concentrations of:

Mptq � mRNA,

Bptq � β-galactosidase,

Aptq � allolactose.

Assumption: Internal lactose (L) is available and is a parameter.

The model (Yildirim and Mackey, 2004)

dM

dt
� αM

1� K1pe�µτM AτM q
n

K � K1pe�µτM AτM q
n
� rγM M

dB

dt
� αB e�µτB MτB � rγB B

dA

dt
� αAB

L

KL � L
� βAB

A

KA � A
� rγAA

M

A

B

L

These are delay differential equations, with discrete time delays due to the transcription and
translation processes.

There should be a self-loop X at M, B, and A, but we’re omitting them for clarity.
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A 3-variable ODE model of the lac operon

ODE for β-galactosidase (B)

dB

dt
� αB e�µτB MτB � rγB B,

Justification:

rγB B � γB B � µB represents loss due to β-galactosidase degredation and dilution from
bacterial growth.

Production rate of β-galactosidase, is proportional to mRNA concentration.

τB � time required for translation of β-galactosidase from mRNA, and
MτB :� Mpt � τBq.

e�µτB MτB accounts for the time-delay due to translation.
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A 3-variable ODE model of the lac operon

ODE for mRNA (M)

dM

dt
� αM

1� K1peµτM AτM q
n

K � K1pe�µτM AτM q
n
� rγM M

Justification:

rγM M � γM M � µM represents loss due to mRNA degredation and dilution from
bacterial growth.

Production rate of mRNA [=expression level!] is proportional to the fraction of free
operator sites,

rOs

Otot
�

1� K1An

1� K1An
� f pAq.

τM � time required for transcription of mRNA from DNA, and MτM :� Mpt � τMq.

The term e�µτM MτM accounts for the time-delay due to transcription.
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A 3-variable ODE model of the lac operon

ODE for allolactose (A)

dA

dt
� αAB

L

KL � L
� βAB

A

KA � A
� rγAA

Justification:

rγAA � γAA� µA represents loss due to allolactose degredation and dilution from
bacterial growth.

The first two terms models the chemical reaction catalyzed by the enzyme
β-galactosidase:

L
αAÝÑ A

βAÝÑ glucose � galactose.
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A 3-variable ODE model of the lac operon

Steady-state analysis

To find the steady states, we must solve the nonlinear system of equations:

0 � αM
1� K1pe�µτM AτM q

n

K � K1pe�µτM AτM q
n
� rγM M

0 � αB e�µτB MτB � rγB B

0 � αAB
L

KL � L
� βAB

A

KA � A
� rγAA

This was done by Yildirim et al. (2004). They set L � 50� 10�3 mM, which was in the
“bistable range.”

They estimated the parameters through an extensive literature search.

Finally, they estimated µ � 3.03� 10�2 min�1 by fitting ODE models to experimental data.

Steady states A� (mM) M� (mM) B� (mM)
I. 4.27� 10�3 4.57� 10�7 2.29� 10�7 basal (stable)
II. 1.16� 10�2 1.38� 10�6 6.94� 10�7 medium (unstable)
III. 6.47� 10�2 3.28� 10�5 1.65� 10�5 high (stable)
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3-variable ODE model

Figure: The fixed points of the allolactose concentration A� in ODE model as a function of the parameter
L (lactose). For a range of L concentrations there are 3 coexisting steady states, which is the phenomenon
of bistability.
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3-variable ODE model

Figure: Numerical solutions of Mptq (mRNA), Bptq (β-galactosidase), and Aptq (allolactose), using

L � 50 � 10�3.
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5-variable ODE model
Consider the following 5 variables, which represent concentrations of:

Mptq � mRNA,

Bptq � β-galactosidase,

Aptq � allolactose.

Pptq � lac permease.

Lptq � intracellular lactose.

The model (Yildirim and Mackey, 2004)

dM

dt
� αM

1� K1pe�µτM AτM q
n

K � K1pe�µτM AτM q
n
� Γ0 � rγM M

dB

dt
� αB e�µτB MτB � rγB B

dA

dt
� αAB

L

KL � L
� βAB

A

KA � A
� rγAA

dP

dt
� αP e�µpτB�τP qMτB�τP � rγP P

dL

dt
� αLP

Le

KLe � Le
� βLe P

L

KLe � L
� αAB

L

KL � L
� rγLL

M

A

B L

P

Le
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5-variable ODE model

Remarks

The only difference in the ODE for M is the extra term Γ0 which describes the basal
transcription rate (Le � 0).

The ODEs for B and A are the same as in the 3-variable model.

The ODE for P is very similar to the one for B:

production rate of lac permease 9 mRNA concentration, with a time-delay.

the 2nd term accounts for loss due to degredation and dilution.

The ODE for lactose,

dL

dt
� αLP

Le

KLe � Le
� βLe P

L

KL1
� L

� αAB
L

KL � L
� rγLL,

is justified by:

The first two terms model the transport lactose by lac permease:

Le
αLÝÝáâÝÝ
βLe

L

The 3rd term describes the reaction catalyzed by β-galactosidase: L
αAÝÑ A.

the 4th term accounts for loss due to degredation and dilution.
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A 5-variable ODE model

To find the steady states, we set M 1 � A1 � B 1 � L1 � P 1 � 0 and solve the resulting
nonlinear system of equations.

This was done by Yildirim et al. (2004). They set Le � 50� 10�3 mM, in the “bistable
range.”

They also estimated the parameters through an extensive literature search.

Finally, they estimated µ � 2.26� 10�2 min�1 by fitting the ODE models to experimental
data.

SS’s A� (nM) M� (mM) B� (mM) L� (mM) P� (mM)
I. 7.85� 10�3 2.48� 10�6 1.68� 10�6 1.69� 10�1 3.46� 10�5

II. 2.64� 10�2 7.58� 10�6 5.13� 10�6 2.06� 10�1 1.05� 10�4

III. 3.10� 10�1 5.80� 10�4 3.92� 10�4 2.30� 10�1 8.09� 10�3
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5-variable ODE model

Figure: The fixed points of the allolactose concentration A� in ODE model as a function of the parameter
Le (external lactose). For a range of Le concentrations there are 3 coexisting steady states, which is the
phenomenon of bistability.

M. Macauley (Clemson) Bistability in ODE and Boolean network models Math 4500, Spring 2017 22 / 28

mailto:macaule@clemson.edu


5-variable ODE model

Figure: Numerical solutions of mRNA, β-galactosidase, allolactose, lac permease, and lactose
concentrations, using Le � 50 � 10�3.
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Bistability in Boolean networks

For bistability to exist, we need to be able to describe three levels of lactose: high, medium,
and low.

In a Boolean network framework, one way to do this is to add variable(s):

Medium levels of lactose

Introduce a new variable Lm meaning “at least medium levels” of lactose. Clearly, L � 1
implies Lm � 1.

High lactose: L � 1, Lm � 1.

Medium lactose: L � 0, Lm � 1.

Basal lactose levels: L � 0, Lm � 0.

We can ignore any state for which L � 1, Lm � 0.

Since β-galactosidase converts lactose into allolactose, it makes sense to add a variable Am

to differentiate between high, medium, and low levels of allolactose.

It’s not necessary, but we will also introduce Rm so we can speak of medium levels of the
repressor protein.
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A Boolean network model of the lac operon

Consider the following Boolean network model, which was published in Veliz-Cuba / Stigler
(2011).

M � mRNA

P � lac permease

B � β-galactosidase

C � cAMP-CAP complex

R � repressor protein

L � lactose

A � allolactose

G � glucose

MC

A

P

R

B

LGe Le

fM � R ^ Rm ^ C
fP � M

fB � M

fC � Ge

fR � A^ Am

fL � Ge ^ P ^ Le

fA � L^ B

fLm � Ge ^ ppLem ^ Pq _ Leq

fAm � L_ Lm

fRm � pA^ Amq _ R

Comments

Circles denote variables, and squares denote parameters.

The subscript e denotes extracellular concentrations.

The subscript m denotes medium concentration.
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A Boolean network model of the lac operon

Here is that model as a polynomial dynamical system:

x1 � lac mRNA (M) f1 � x4px5 � 1qpx6 � 1q
x2 � lac permease (P) f2 � x1

x3 � β-galactosidase (B) f3 � x1

x4 � cAMP-CAP complex (C) f4 � Ge � 1
x5 � high repressor protein (R) f5 � px7 � 1qpx8 � 1q
x6 � med. repressor protein (Rm) f6 � px7 � 1qpx8 � 1q � x5 � px7 � 1qpx8 � 1qx5

x7 � high allolactose (A) f7 � x3x9

x8 � med. allolactose pAmq f8 � x9 � x10 � x9x10

x9 � high intracellular lactose pLq f9 � x2pGe � 1qLe

x10 � med. intracellular lactose pLmq f10 � px2Lem � Le � x2LemLeqpGe � 1q

To find the fixed points, we need to solve the following system of nonlinear equations over
F2, for six choices of initial conditions, pLe , Lem,Geq: 

fi � xi � 0, i � 1, 2, . . . , 10
(
.

This is an easy task in Sage.
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The bistable case
Let’s compute the fixed points with medium lactose (Le � 0, Lem � 1) and no glucose
(Ge � 0), which is the case where we hope to observe bistability.

We see immediately that x7 � x9 � 0 and x4 � 1.

Recall that xk
10 � x10 for all k P N. Thus, the last equation, x3

10 � x10 � 0 doesn’t give any
information about x10.

The variables x1, x2, x3, and x8 must equal x10.

The variables x5 and x6 must be the opposite of x10. We get two fixed points:

pM,P,B,C ,R,Rm,A,Am, L, Lmq � p0, 0, 0, 1, 1, 1, 0, 0, 0, 0q and p1, 1, 1, 1, 0, 0, 0, 1, 0, 1q.
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Fixed point analysis and bistability

Computing the fixed point(s) for the other 5 initial conditions is an easy task in Sage:

pLe , Lem,Geq M P B C R Rm A Am L Lm operon
p0, 0, 1)
p0, 1, 1) 0 0 0 0 1 1 0 0 0 0 OFF
p1, 1, 1)
p0, 0, 0) 0 0 0 1 1 1 0 0 0 0 OFF
p1, 1, 0) 1 1 1 1 0 0 0 1 0 1 ON
p0, 1, 0) 0 0 0 1 1 1 0 0 0 0 OFF

1 1 1 1 0 0 0 1 0 1 ON

Suppose glucose or lactose are both absent (Le�Lem�Ge�0), so the operon is OFF:

pM,P,B,C ,R,Rm,A,Am, L, Lmq � p0, 0, 0, 1, 1, 1, 0, 0, 0, 0q.

Now, let’s change Lem from 0 to 1, increasing lactose to medium. We are now in the
next-to-last fixed point above, so the operon remains OFF.

Conversely, suppose lactose concentration is high (Le�Lem�1), and so the operon is ON:

pM,P,B,C ,R,Rm,A,Am, L, Lmq � p1, 1, 1, 1, 0, 0, 0, 1, 0, 1q.

Now, let’s change Le from 1 to 0, reducing lactose levels to medium. This takes us to the
last fixed point above, so the operon remains ON.
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