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Boolean functions

Let F2 = {0, 1}. By a Boolean function, we usually mean a function f : Fn
2 −→ F2.

There are several standard ways to write Boolean functions:

1. As a logical expression, using ∧, ∨, and ¬ (or X )

2. As a polynomial, using +, and ·
3. As a truth table.

Example

The following are three different ways to express the function that outputs 0 if
x = y = z = 1, and 1 otherwise.

f (x , y , z) = x ∧ y ∧ z

f (x , y , z) = 1 + xyz

x 1 1 1 1 0 0 0 0
y 1 1 0 0 1 1 0 0
z 1 0 1 0 1 0 1 0

f (x, y , z) 0 1 1 1 1 1 1 1

By counting the number of truth tables, there are 2(2n) n-variable Boolean functions.
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Boolean algebra
Boolean operation logical form polynomial form

AND z = x ∧ y z = xy
OR z = x ∨ y z = x + y + xy
NOT z = x z = 1 + x

Over F2, we have the identity x2 = x , or equivalently, x(1 + x) = 0.

Theorem

Every Boolean function f : Fn
2 → F2 is a polynomial in the quotient ring F2[x1, . . . , xn]/I ,

where I = 〈x2
1 − x1, . . . , x2

n − xn〉.

Proof

Clearly, every such polynomial defines a Boolean function f : Fn
2 → F2.

We want to prove the converse. It suffices to show that these sets have the same size.

There are 2(2n) truth tables (Boolean functions) on n variables.

Since x2
i = xi , there are 2n monomials in x1, . . . , xn. Every polynomial in the quotient ring is

uniquely determined by a subset of these. �

Easy generalization

Every function f : Fn
p → Fp is a polynomial in Fp [x1, . . . , xn]/〈xp

1 − x1, . . . , x
p
n − xn〉.
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Boolean networks
Classically, a Boolean network (BN) is an n-tuple f = (f1, . . . , fn) of Boolean functions,
where fi : Fn

2 → F2. This defines a finite dynamical system (FDS) map

f : Fn
2 −→ Fn

2, x = (x1, . . . , xn) 7−→
(
f1(x), . . . , fn(x)).

Any function from a finite set to itself can be described by a directed graph with every node
having out-degree 1. For a BN, this graph is called the phase space, or state space.

Definition

The phase space of a BN is the digraph with vertex set Fn
2 and edges

{
(x , f (x)) | x ∈ Fn

2

}
.

Proposition

Every function f : Fn
2 → Fn

2 is the phase space of a Boolean network: f = (f1, . . . , fn).

Proof

Clearly, every BN defines a function Fn
2 → Fn

2. We want to prove converse. It suffices to
show that these sets have the same cardinality.

To count functions Fn
2 → Fn

2, we count phase spaces. Each of the 2n nodes has 1 out-going

edge, and 2n destinations. Thus, there are (2n)2n
= 2(n2n) phase spaces.

To count BNs: there are 2(2n) choices for each fi , and so (2(2n))n = 2(n2n) possible BNs. �
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Local models and FDSs

Corollary

Every function f = Fn
2 → Fn

2 can be written as an n-tuple of “square-free” polynomials over
F2. That is,

f = (f1, . . . , fn), fi ∈ F2[x1, . . . , xn]/〈x2
1 − x1, . . . , x

2
n − xn〉.

This all carries over to generic finite fields, but we will carefully re-define things first.

Definition

Let F be a finite field. A local model over F is an n-tuple of functions f = (f1, . . . , fn), where
each fi : Fn → F.

Definition

Every local model f = (f1, . . . , fn) over F defines a finite dynamical system (FDS), by
iterating the map

f : Fn −→ Fn, x = (x1, . . . , xn) 7−→
(
f1(x), . . . , fn(x)).

Remark

A classical Boolean network (BN) is just a local model over F2.
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Local polynomial models and PDSs
Let F be a finite field. We slightly abuse notation and write a polynomial in the quotient ring

R/I = F[x1, . . . , xn]/〈xp
1 − x1, . . . , x

p
n − xn〉

as f instead of f + I . It is a sum of monomials with each exponent from 0, . . . , p − 1:

xα := xα1
1 xα2

2 · · · x
αn
n , α = (α1, . . . , αn) ∈ Zn

p .

Definition

An element f in (R/I )× · · · × (R/I ) is called a local polynomial model over F. Note that f
is also a local model.

Definition

Every local polynomial model f = (f1, . . . , fn) over F defines a canonical finite polynomial
dynamical system (PDS), by iterating the map

f : Fn −→ Fn, x = (x1, . . . , xn) 7−→
(
f1(x), . . . , fn(x)).

Remark

Let |F| = q. Every function fi : Fn → F is defined by its unique truth table.

There are exactly q(qn) truth tables: qn input vectors, each having q possible outputs.
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Which local models are polynomial models?

Let F be a finite field of order q = pn.

Definition

The algebraic normal form of a polynomial f ∈ R/I is

f =
∑

cαxα,

where the sum is taken over all pn monomials, and cα ∈ F.

Proposition

There are q(qn) functions f : Fn → F, but only q(pn) polynomials in the quotient ring

R/I = F[x1, . . . , xn]/〈xp
1 − x1, . . . , x

p
n − xn〉.

Proof

The number of functions f : Fn → F is just the number of truth tables: q(qn).

To find |R/I |, we count algebraic normal forms: pn monomials xα, each having q possible

coefficients cα ∈ F =⇒ q(pn) elements of R/I . �
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General finite fields: local models vs. local polynomial models

Let F be a finite field of order q = pn.

Summary

(i) There are q(nqn) local models (f1, . . . , fn) over F.

(ii) There are q(nqn) functions Fn → Fn (i.e., FDS maps).

(iii) There are only q(npn) local polynomial models (i.e., PDS maps).

In other words, every function Fn → Fn is indeed the finite dynamical system (FDS) map
(i.e., phase space) of a local model (f1, . . . , fn) over F.

However, over non-prime fields, there are FDS maps that are not PDS maps.

Said differently, over non-prime fields, there are local models that are not polynomial models

Open question

For F = Fpn , characterize which functions Fn → Fn are PDS maps of local models.

This is likely known by someone but using completely different terminology.
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Asynchronous Boolean networks

Consider a Boolean network f = (f1, . . . , fn).

Composing the functions synchronously defines the PDS map f : Fn
2 → Fn

2.

We can also compose them asynchronously. For each local function fi , define the function

Fi : Fn
2 −→ Fn

2, x = (x1, . . . , xi , . . . , xn) 7−→ (x1, . . . , fi (x), . . . , xn).

Definition

The asynchronous phase space of (f1, . . . , fn) is the digraph with vertex set Fn
2 and edges{

(x ,Fi (x)) | i = 1, . . . , n; x ∈ Fn
2

}
.

Remarks

Clearly, this graph has n · 2n edges, though self-loops are often omitted.

Every non-loop edge connect two vertices that differ in exactly one bit. That is, all
non-loops are of the form (x , x + ei ), where ei is the ith standard unit basis vector.

Unless we specifiy otherwise, the term “phase space” refers to the “synchronous phase
space.”

It is elementary to extend this concept from BNs to local models over finite fields.

M. Macauley (Clemson) Boolean networks, local models, & finite PDSs Math 4500, Spring 2017 9 / 15

mailto:macaule@clemson.edu


Examples: synchronous vs. asynchronous
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Asynchronous

phase space
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11

Synchronous phase space

f1(x1, x2) = x2

f2(x1, x2) = x1
1 2

Functions Wiring diagram

010

000

111

101

110 011 100 001

Synchronous
phase space
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Asynchronous phase space
(self-loops omitted)

f1 = x2

f2 = x1 ∧ x3

f3 = x2
1

2

3

Functions Wiring diagram

Remarks

The 2-cycle in the 1st BN is an “artifact of synchrony.”

In the 2nd asynchronous BN, there is a directed path between any two nodes.
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Asynchronous local models over finite fields

Recall: every function Fn → Fn can be realized as the FDS map (i.e., phase space) of a local
model over F.

Similarly, every digraph with vertex set Fn that “could be” the asynchronous phase space of
a local model, is one.

Theorem

Let G = (Fn,E) be a digraph with the following local property (definition):

For every x ∈ Fn and i = 1, . . . , n: E contains exactly one edge of the form (x , x + kei ),
where k ∈ F (possibly a self-loop)

Then G is the asynchronous phase space of some local model (f1, . . . , fn) over F.

Proof

It suffices to show there there are q(nqn) digraphs G = (Fn,E) with the “local property”.

Each of the qn nodes x ∈ Fn has n out-going edges (including loops). Each edge has q
possible destinations: x + kei for k ∈ F.

This gives qn choices at each node, for all qn nodes, for (qn)qn
= q(nqn) graphs in total. �
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Local models over general finite fields: synchronous vs. asynchronous

Let F be a finite field of order q = pn, and let

R/I = F[x1, . . . , xn]/〈xp
1 − x1, . . . , x

p
n − xn〉,

which has cardinality q(pn).

Summary (updated)

There are q(nqn) local models (f1, . . . , fn) over F.

Each local model gives rise to both a

synchronous phase space: the FDS map Fn → Fn;

asynchronous phase space: a digraph G = (Fn,E) with the “local property”.

Moreover, there are exactly q(nqn) maps Fn → Fn and q(nqn) graphs with the local property!

Of the q(nqn) local models, q(npn) are polynomial models. These are equal iff F = Fp .

Open questions

For F = Fpn , characterize which:

synchronous phase spaces arise from local polynomials models;

asynchronous phase spaces arise from local polynomial models.
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Phase spaces: synchronous vs. asynchronous

The synchronous phase space of a local model f = (f1, . . . , fn) has two types of nodes:

transient points: f k (x) 6= x for all k ≥ 1.

periodic points: f k (x) = x for some k ≥ 1. (k = 1: fixed point)

Thus, the phase space consists of periodic cycles and directed paths leading into these cycles.

The asynchronous phase space of f = (f1, . . . , fn) can be more complicated.

For x ,∈ y ∈ Fn, define x ∼ y iff there is a directed path from x to y and from y to x .

The resulting equivalence classes are the strongly connected components (SCC) of the phase
space. An SCC is terminal if it has no out-going edges from it.

A point x ∈ Fn:

is transient if it is not in a terminal SCC.

lies on a cyclic attractor if its terminal SCC is a chordless k-cycle (k = 1: fixed point).

lies on a complex attractor otherwise.

Proposition

The fixed points of a local model are the same under synchronous and asynchronous update.
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Wiring diagrams

A function fj : Fn → F is essential in xi if for some x ∈ Fn and k ∈ F,

f (x) 6= f (x) + kei ,

where ei ∈ Fn is the ith standard unit basis vector.

Definition

The wiring diagram of a local model (f1, . . . , fn) over F is a directed graph G on with vertex
set x1, . . . , xn (or just 1, . . . , n) and a directed edge (xi , xj ) if fj is essential in xi .

If F = Fp , then an edge xi −→ xj is positive if a ≤ b implies

fj (x1, . . . , xi−1, a, xi+1, . . . , xn) ≤ fj (x1, . . . , xi−1, b, xi+1, . . . , xn)

and negative if the second inequality is reversed.

Negative edges are denoted with circles or blunt arrows instead of traditional arrowheads.

Definition

A function fj : Fn → F is unate (or monotone) if every edge in the wiring diagram is either
positive or negative.
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Wiring diagrams in Boolean networks

A positive edge xi xj represents a situation where i activates j .

Examples.

fj = xi ∧ y : 0 = fj (xi = 0, y) ≤ fj (xi = 1, y) ≤ 1.

fj = xi ∨ y : 0 ≤ fj (xi = 0, y) ≤ fj (xi = 1, y) = 1.

A negative edge xi xj represents a situation where i inhibits j .

Examples.

fj = xi ∧ y : 1 ≥ fj (xi = 0, y) ≥ fj (xi = 1, y) = 0.

fj = xi ∨ y : 1 = fj (xi = 0, y) ≥ fj (xi = 1, y) ≥ 0.

Occasionally, edges are neither positive nor negative:

Example. (The logical “XOR” function):

fj = (xi ∧ y) ∨ (xi ∧ y):
0 = fj (x1 = 0, y = 0) < fj (x1 = 1, y = 0) = 1

1 = fj (x1 = 0, y = 1) > fj (x1 = 1, y = 1) = 0

Most edges in Boolean network models are either positive or negative because most
biological interactions are either simple activations or inhibitions.
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