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Motivation

In the previous lecture, we modeled time-delays and dilution & degradation by adding a
number of Booleans variables.

This can causes the state space to grow enormously, though in many cases, this shouldn’t
affect the qualitative nature of the dynamics.

In other cases, certain Boolean network models are huge and too big for direct analysis.

In this lecture, we’ll see how large Boolean networks can be “reduced” to much smaller
models in a way that preserves the key feature such as fixed points.
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Wiring diagrams

Definition

A Boolean network (BN) in the Boolean variables x1, . . . , xn is a function

f � pf1, . . . , fnq : t0, 1un ÝÑ t0, 1un

where each fi : t0, 1un Ñ t0, 1u is called a coordinate or local function.

Definition

The wiring diagram of a Boolean network is a directed graph G on with vertex set x1, . . . , xn

(or just 1, . . . , n) and a directed edge pxi , xj q if fj depends on xi .

An edge xi ÝÑ xj is positive if

fj px1, . . . , xi�1, 0, xi�1, . . . , xnq ¤ fj px1, . . . , xi�1, 1, xi�1, . . . , xnq

and negative if the inequality is reversed.

Negative edges are denoted with circles or blunt arrows instead of traditional arrowheads.

Definition

A Boolean function fi is unate (or monotone) if every edge in the wiring diagram is either
positive or negative.
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Wiring diagrams

A positive edge xi xj represents a situation where i activates j .

Examples.

fj � xi ^ y : 0 � fj pxi � 0, yq ¤ fj pxi � 1, yq ¤ 1.

fj � xi _ y : 0 ¤ fj pxi � 0, yq ¤ fj pxi � 1, yq � 1.

A negative edge xi xj represents a situation where i inhibits j .

Examples.

fj � xi ^ y : 1 ¥ fj pxi � 0, yq ¥ fj pxi � 1, yq � 0.

fj � xi _ y : 1 � fj pxi � 0, yq ¥ fj pxi � 1, yq ¥ 0.

Occasionally, edges are neither positive nor negative:

Example. (The logical “XOR” function):

fj � pxi ^ yq _ pxi ^ yq:
0 � fj px1 � 0, y � 0q   fj px1 � 1, y � 0q � 1
1 � fj px1 � 0, y � 1q ¡ fj px1 � 1, y � 1q � 0

Most edges in Boolean networks arising from models are either positive or negative because
most biological interactions are either simple activations or inhibitions.
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A motivating example

Toy model of the lac operon

fM � R R represses mRNA production
fP � M P is produced by translation of mRNA
fB � M B is produced by translation of mRNA

fR � A A inactivates the repressor protein
fA � L ^ B A is produced by lactose and β-galactosidase
fL � P Lac permease transports lactose into the cell

Here is the wiring diagram:

M B R

P L A

We won’t show the state space because it’s large (64 nodes), but it has two fixed points,
both of which are biologically reasonable:

pM,P,B,R,A, Lq � p0, 0, 0, 1, 0, 0q and p1, 1, 1, 0, 1, 1q .

Our goal is to “reduce” this model in a way that in some senes, preserves the fixed points.
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A motivating example (cont.)

Toy model of the lac operon

fM � R
fP � M
fB � M

fR � A
fA � L ^ B
fL � P

M B R

P L A

Consider the variable P. At equilibrium, Pptq � Ppt � 1q � fPpxptqq � Mptq.

Similarly, we can conclude that Bptq � Bpt � 1q � fBpxptqq � Mptq.

Thus, we can replace every instance of P and B with M:

fM � R
fP � M
fB � M

fR � A
fA � L ^ M
fL � M

M

L A

R

There are two steady-states of this reduced network: pM,R,A, Lq � p0, 1, 0, 0q, p1, 0, 1, 1q.

Moreover, since B � M, P � M, we can recover the steady-states of the original network.
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A motivating example (cont.)

Partially reduced model of the lac operon

fM � R

fR � A
fA � L ^ M
fL � M

M

L A

R

We can reduce further. At equilibrium, A � fA � L ^ M, so we can replace every instance of
A with L ^ M:

fM � R

fR � L ^ M � L _ M
fA � L ^ M
fL � M

M

L

R

There are two fixed points of this reduced network: pM,R, Lq � p0, 1, 0q, p1, 0, 1q.

Moreover, since B � P � M, A � L ^ M, we can recover the fixed points of the original
network by back-substituting.

pM,P,B,R,A, Lq � pM,M,M,R, L ^ M, Lq � p0, 0, 0, 1, 0, 0q, and p1, 1, 1, 0, 1, 1q .
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A motivating example (cont.)

Partially reduced model of the lac operon

fM � R

fR � L _ M
fL � M

M

L

R

We can reduce further. At equilibrium, L � fL � M, so we can replace every instance of L
with M:

fM � R

fR � M _ M � M
fL � M

M R

There are two fixed points of this reduced network pM,Rq � p0, 1q, p1, 0q.

Moreover, since L � B � P � M and A � L ^ M � M, we can recover the steady-states of
the original network by back-substituting.

pM,P,B,R,A, Lq � pM,M,M,R,M,Mq � p0, 0, 0, 1, 0, 0q, and p1, 1, 1, 0, 1, 1q .
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General reduction

Reduction steps

1. Simplify the Boolean functions and wiring diagram.

1.1 Reduce / simplfy Boolean expressions using Boolean algebra.

1.2 Remove unnecessary edges from the wiring diagram.

2. Delete vertices xi with no self-loop (equivalently, fxi doesn’t depend on xi ), by doing the
following:

2.1 For all vertices y such that xi ÝÑ y , substitute fxi into xi :

fy px1 . . . , � � � xi � � �looomooon
pos. y

, . . . , xnq becomes fy ppx1 . . . , � � � fxi � � �loooomoooon
pos. y

, . . . , xnq .

2.2 Replace edges v ÝÑ xi ÝÑ y by v ÝÑ y and remove xi (and all edges to/from xi ).

Exercise (HW)

In Step 2.2 above, how should you replace replace edges of the form:

v xi y

v xi y

v xi y
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General reduction: an example

Consider the Boolean network f pxq � px2, px1 ^ x3q _ x2, x1q. 1 2

3

Let’s remove x3 � x1. The new Boolean functions are

h1px1, x2q � f1px1, x2, x3q � f1px1, x2, x1q � x2 ,
h2px1, x2q � f2px1, x2, x3q � f2px1, x2, x1q � px1 ^ x1q _ x2

However, x1 ^ x1 � 0, and so

h2px1, x2q � px1 ^ x1q _ x2 � 0 _ x2 � x2 .

The reduced Boolean network is thus hpx1, x2q � px2, x2q 1 2

To find the fixed points, we must solve the system hi � xi for i � 1, 2:

"
h1px1, x2q � x2 � x1

h2px1, x2q � x2 � x2 .

Since x2 � x2, there are no fixed points in the reduced BN, and thus none in the original BN.
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General reduction: an example

Consider the Boolean network:

f � px5 _ x2 _ x4, x1 ^ x3, x2, x2, x1 _ x4q.

1 2 3

5 4

Remove x5 � x1 _ x4:

f � ppx1 _ x4q _ x2 _ x4, x1 ^ x3, x2, x2q

� px1 _ x2 _ x4, x1 ^ x3, x2, x2q .

1 2 3

4

Remove x4 � x2 :

f � px1 _ x2 _ x2, x1 ^ x3, x2q � px1 _ x2, x1 ^ x3, x2q

1 2 3

Remove x3 � x2:

f � px1 _ x2, x1 ^ x2q � px1 _ x2, x1 ^ x2q

1 2

This yields the system:

$'''&
'''%

h1px1, x2q � x1 _ x2

h2px1, x2q � x1 ^ x2

x3 � x2

x4 � x2

x5 � x1 _ x4

The reduced system ph1, h2q has 2 fixed points:

px1, x2q � p1, 0q, p0, 1q.

Thus, the original system has two fixed points:

px1, x2, x3, x4, x5q � p1, 0, 1, 1, 1q, p0, 1, 0, 0, 0q.
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Computational algebra software: Macaulay2 and Sage

Macaulay2 is a free computer algebra system developed by Dan Grayson (UIUC) and Mike
Stillman (Cornell). It is named after the English mathematician Francis Macaulay
(1862–1937).

It can be downloaded or used online at www.math.uiuc.edu/Macaulay2. Alternatively, it has
been incorporated into the Sage Math Cloud: https://cloud.sagemath.org.

Let’s see how to use Macaulay2 in Sage to do the Boolean reduction from the previous slide.
First, tell Sage that we want to use Macaulay2 (hit Shift-Enter after each command):

%default_mode macaulay2

We want polynomials in variables x1, . . . x5, over the field F2, and x2
i � xi :

R = ZZ/2[x1,x2,x3,x4,x5] / ideal(x1^2-x1, x2^2-x2, x3^2-x3, x4^2-x4, x5^2-x5);

For convenience, let’s define a|b :� a � b � ab and a&b :� a � b:

RingElement | RingElement :=(x,y)->x+y+x*y;

RingElement & RingElement :=(x,y)->x*y;
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Computational algebra software: Macaulay2 and Sage

Input the Boolean network f � pf1, f2, f3, f4, f5q � px5 _ x2 _ x4, x1 ^ x3, x2, x2, x1 _ x4q:

f1 = x5 | (1+x2) | x4;

f2 = (1+x1) & (1+x3);

f3 = 1+x2;

f4 = 1+x2;

f5 = x1 | x4;

Now, typing f1 gives the following output:

x2*x4*x5 + x2*x4 + x2*x5 + x2 + 1

We can use the following commands to reduce the BN by substituting x5 � x1 _ x4:

f1=sub(f1,{x5=>f5});

f2=sub(f2,{x5=>f5});

f3=sub(f3,{x5=>f5});

f4=sub(f4,{x5=>f5});
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Computational algebra software: Macaulay2 and Sage

The original Boolean network: f � pf1, f2, f3, f4, f5q � px5 _ x2 _ x4, x1 ^ x3, x2, x2, x1 _ x4q.

Let’s reduce further by removing x4:

f1=sub(f1,{x4=>f4});

f2=sub(f2,{x4=>f4});

f3=sub(f3,{x4=>f4});

Finally, let’s remove x3:

f1=sub(f1,{x3=>f3});

f2=sub(f2,{x3=>f3});

To see the reduced network, type:

(f1,f2);

The output is:

(x1*x2 + x2 + 1, x1*x2 + x2)

Sequence
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Application: Boolean model of Th-cell differentiation

White blood cells or leukocytes are in the immune system and fight diseases and infections.

One subtype are the lymphocytes, which includes the natural killer (NK) cells, B cells, and T
cells, all which have different cellular functions.

The T-cells circulate throughout our bodies in the lymph fluid, looking for cellular
abnormalities, infections, and diseases.

Helper T-cells (Th-cells) are a certain type of T-cells. They begin as näıve, or Th0 cells, and
then differentiate into one of two phenotypes:

1. Type 1 are the Th1 cells which fight intracellular bacteria and protozoa.

2. Type 2 are the Th2 cells which fight extracellular parasites.

Malfunctions of immune responses involving Th1 phenotypes can result in autoimmune
diseases, whereas malfunctions involving Th2 phenotypes can result in allergic reactions.

The biochemical signals that determine Th1 and Th2 differentiation act as a bistable switch,
which permits either GATA3 or T-bet to be expressed, but not both. This was modeled
using a 23-node Boolean network in Mendoza et. al (2006).
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Boolean model of Th-cell differentiation (Mendoza, 2006)

x1 � GATA3 f1 � px1 _ x21q ^ x22

x2 � IFN-β f2 � 0
x3 � IFN-βR f3 � x2

x4 � IFN-γ f4 � px14 _ x16 _ x20 _ x22q ^ x19

x5 � IFN-γR f5 � x4

x6 � IL-10 f6 � x1

x7 � IL-10R f7 � x6

x8 � IL-12 f8 � 0
x9 � IL-12R f9 � x8 ^ x21

x10 � IL-18 f10 � 0
x11 � IL-18R f11 � x10 ^ x21

x12 � IL-4 f12 � x1 ^ x18

x13 � IL-4R f13 � x12 ^ x17

x14 � IRAK f14 � x11

x15 � JAK1 f15 � x5 ^ x17

x16 � NFAT f16 � x23

x17 � SOCS1 f17 � x18 _ x22

x18 � STAT1 f18 � x3 _ x15

x19 � STAT3 f19 � x7

x20 � STAT4 f20 � x9 ^ x1

x21 � STAT6 f21 � x13

x22 � T-bet f22 � px18 _ x22q ^ x1

x23 � TCR f23 � 0
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Boolean model of Th-cell differentiation

Reduced model (by removing, in order, x23, x21, x20, . . . ):

Variable Boolean function Polynomial function
x1 � GATA3 h1px1, x22q � x1 ^ x22 h1px1, x22q � x1x22 � x1

x22 � T-bet h22px1, x22q � x1 ^ x22 h22 � x1x22 � x22

There are three fixed points:

p0, 0q: GATA3 and T-bet are inactive, the “signature” of Th0 cells.

p0, 1q: Only T-bet is active, the signature of Th1 cells.

p1, 0q: Only GATA3 is active, the signature of Th2-cells.
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Application: Modeling time delays and degradration & dilution

In the last lecture, we saw how to add Boolean variables to model time delays and loss of
concentration due to degradation / dilution.

Consider the following model of the lac operon (slightly modified from last lecture) that
assumes that β-galactosidase takes several time-steops to degrade.

Example model

$''''''''&
''''''''%

fM � A
fA � pB ^ Lq _ Lhigh

fB � M _
�

B ^ Boldp3q

	
fBoldp1q

� M ^ B

fBoldp2q
� M ^ Boldp1q

fBoldp3q
� M ^ Boldp2q

B

Boldp1q

Boldp2q

Boldp3q

A

M

Lhigh

L

Do you see why the precise number of Boldpiq variables is unimportant, regarding the number
and quatitative nature of the fixed points? (HW exercise.)
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