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Molecular networks

Many complex systems or processes in molecular biology can be represented as networks.

Typically, the nodes represent biomolecules (proteins, enzymes, etc.) and the edges represent
interactions (activation, repression, etc.).

Edges are often signed. The edge

X Y means “X activates Y ”

X Y means “X represses Y ” (or “X inhibits Y ”)

Examples of such networks include:

Protein–protein interaction networks

Gene regulatory networks

Signaling networks

Metabolic networks.

These so-called molecular networks model how cellular processes communicate and react
with their surroundings, maintain cellular homeostatis, and carry out necessary cell behavior.

Think of these networks like big natural Rube Goldberg machines.

Many disease processes or disorders such as cancer, lactose intolerance, diabetes, vascular
diseases, and autoimmunity, arise from problems in signal tranductions or gene regulation.
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Molecular networks
Interactions are usually highly nonlinear. They are often well-modeled by Hill functions.
(Due to Michaelis–Menten models of enzyme kinetics.)

The Hill function for an activator X Y is f (X ) =
βX n

Kn + X n
.

The Hill function for a repressor X Y is g(X ) =
β

1 + (X/K)n
= f (X )X−n.

“S-shaped” functions are generally called sigmoidal.

In the limit, as n→∞, Hill functions become step functions.
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Figure: Scheme of a hypothetical signaling and gene regulatory network.
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Figure: Signaling network involved in activation-induced cell death of killer T-cells. T-LGL leukemia
disrupts this process, causing certain activated T-cells to survive, which later attack healthy cells.
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Network topology

Analysis of the network topology of molecular networks includes graph-theretic measures
such as centrality, network motifs, and shortest paths.

Nodes can be categorized as sources (signals or parameters), sinks (outcomes), or neither.

Centrality measures describe the importance of individual nodes in the network. Examples
include:

degree (or in-degree, or out-degree),

clustering coefficient,

betweenness.

Network motifs are recurring patterns (subgraphs) with well-defined topologies. Common
examples include:

Feed-forward loops (coherent and incoherent)

Feedback loops (positive and negative)

Feed forward loops tend to arise with greater frequency than in random networks.

Rule of thumb

Positive feedback loops tend to support multistability while negative feedback loops lead to
oscillations.
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Feed-forward loops

Figure: Relative abundance of the eight types of feed-forward loops in transcription networks (from
U. Alon, 2007).
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Strongly connected components

Definition

A directed graph is strongly connected if for every two nodes u and v , there is a (directed)
path from u to v .

In any directed graph, the strongly connected components form a equivalence relation.

Moreover, there strongly connected components form a directed acyclic graph (i.e., are
partially ordered): add an edge from Ci to Cj if there is a directed path from some x ∈ Ci to
y ∈ Cj in the original graph.

Nodes in a strongly connected component tend to have a common task.

Signaling networks tend to have a large strongly connected “core”. For example, the
previous T-cell network has a core of 44 nodes (75% total).
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A simple Boolean network

Consider a 3-node network with a signal A that activates B, which in turn, activates C .

For simplicity, suppose that each node takes a state from {0, 1}. (OFF or ON).

Suppose that C is activated as long as both A and B are.

Here’s what might happen biologically (not necessarily synchronously):

A turns on. This activates B and then C , and the system settles in the ON
steady-state, (A,B,C) = (1, 1, 1).

Eventually, A turns off. This de-activates B and then C , and the system flips to the
OFF steady-state, (A,B,C) = (0, 0, 0).

This can be visualized by the following Boolean network:

A

B

C

fA = xA

fB = xA

fC = xA ∧ xB
000

001

010

011

A is OFF

100 110

101

111

A is ON
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Differenial equations vs. Boolean networks

Classically, molecular networks have been modeled using systems of ordinary differential
equations (ODEs).

Nodes are represented by real-valued functions, often which represent concentrations.

Mathematicians and scientists have studied how the network topology affect the system
dynamics.

Rule of thumb

ODEs can exhibit complex dynamic behavior such as:

filtering of noisy input signals (coherent feed-forward loops)

excitation–adaptation (incoherent feed-forward loops, or negative feedback loops)

multistability (positive feedback loops)

Question

Can Boolean models be used as realistic qualitative approximations of molecular networks in
biology?
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Synchronous vs. general asynchronous update

Let’s compare the previous example under synchronous vs.
asynchronous function update.

A

B

C

fA = xA

fB = xA

fC = xA ∧ xB

000

001

010

011

Synchronous Boolean network

100 110

101

111 000

001

010

011

Asynchronous Boolean network

100 110

101

111

In actual biological networks, events and updates might occur randomly and unexpectedly.

Thus, one can make the case that the asynchronous update is “more natural”.

Fixed-points correspond to the steady activation states of components (e.g., ON or OFF) or
to cellular phenotypes (e.g., cancerous, non-cancerous) in signaling networks.

Proposition

The set of fixed points of a Boolean network is independent of update scheme (synchronous,
asynchronous, stochastic, etc.)

M. Macauley (Clemson) Networks in systems biology Math 4500, Spring 2017 11 / 15

mailto:macaule@clemson.edu


Excitation–adaptation behavior
Chemotaxis is the movement of a cell in response to a chemical stimulus (the signal).

Consider the following system of ODEs, where X and R be concentrations of proteins, ki
(i = 1, . . . , 4) are rate constants, and S be the value of the signal (a parameter):

dR

dt
= k1S − k2XR

dX

dt
= k3S − k4X

Analytical results

The (steady-state) concentration R∗ does not depend on S .
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Excitation–adaptation behavior
Let’s create a Boolean model of this. The nodes will be S , X , R. Assume X and R have
similar timescales and use synchronous update.

Here are the Boolean functions, wiring diagram, and state space:

S

X

R

fS = xS

fX = xS

fR = xS ∧ xX
010

000

011 001

110

111

100

101

The dashed lines describe a step-wise increase in the signal S (i.e., 0→ 1 or 1→ 0).

Analysis

(i) Start with xS = 0. The system goes into 000 in one step.

(ii) Now set xS = 1, which leads to 100.

(iii) The system transitions 100→ 111 excitation for R.

(iv) In the next step 111→ 110 adaptation for R.

In summary, the change in xS drove a transient excitation of xR : 0 7→ 1 but the steady-state
adapted to its original value of xR = 0.
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Multistability and hysteresis

The phenomenon of multistability arises in physics, biology, and chemistry. It is the ability of
a system to achieve multipe steady-states under the same external conditions.

Consider the following ODE, where S and P are concentrations of proteins, ki (i = 0, 1, 2)
are rate constants, and fE is a sigmoidal (“Hill-like”) function:

dR

dt
= k0fE (R(t)) + k1S(t)− k2P(t)

Phosphorylation of a protein (adding of a phosphoryl group (PO2−
3 ) changes its function,

e.g., like an ON/OFF switch. The EP ↔ E represents a phosphorylation–dephosphorylation
cycle in which concentration of P is constant.

This ODE exhibits irreversible bistability.
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Multistability and hysteresis

Let’s create a Boolean model of this. The nodes will be S , R, E , where E = 0 and E = 1
are the Boolean approximation of the sigmoidal function fE (R).

In R′ = k0fE (R(t)) + k1S(t)− k2P(t), synthesis of R is catalyzed independently by E and S .

Use an asynchronous update.

R E

SfS = xS

fR = xS ∨ xE

fE = xR 011

000

010 001

111

110 101

100

Analysis

(i) Start at 000 (OFF). Increase xS to 1, which leads to 100.

(ii) The system settles to the ON steady-state 111.

(iii) Now, decrease xS to 0, which leads to the steady-state 011. However, R is still 1.

Exercise. Show that the same behavior occurs under synchronous update.
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