Read: Lax, Chapter 6, pages 58–69.

- 1. Prove the following properties of the trace function:
 - (a) tr(AB) = tr(BA) for all $m \times n$ matrices A and $n \times m$ matrices B.
 - (b) $\operatorname{tr}(AA^T) = \sum a_{ij}^2$ for all $n \times n$ matrices A. This quantity is the square of the Hilbert-Schmidt norm of A.
- 2. Let A be an $n \times n$ matrix over \mathbb{C} with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. For a vector $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$, define the *norm* of z by

$$||z|| = \left(\sum_{i=1}^{n} |z_i|^2\right)^{1/2}.$$

- (a) State and prove necessary and sufficient conditions for $\lim_{N\to\infty} ||A^N z|| = 0$ for all $z \in \mathbb{C}$.
- (b) Prove that if $|\lambda_i| > 1$ for each *i*, then $\lim_{N \to \infty} ||A^N z|| = \infty$ for all $z \neq 0$. Soon, after developing more analytical techniques, we will formulate and prove a necessary and sufficient condition for this to hold.
- 3. Suppose that $B = PAP^{-1}$, and A has eigenvalues $\lambda_1, \ldots, \lambda_n$ and eigenvectors v_1, \ldots, v_n . What are the eigenvalues and eigenvectors of B? Prove your claims.
- 4. Let X be an n-dimensional vector space, and $A: X \to X$ a linear map with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. Let v_1, \ldots, v_n be the corresponding eigenvectors of A, and let ℓ_1, \ldots, ℓ_n be the corresponding eigenvectors of the transpose $A': X' \to X'$.
 - (a) Prove that $(\ell_i, v_i) \neq 0$ for $i = 1, \ldots, n$.
 - (b) Explain why every $x \in X$ can be written as $x = a_1v_1 + \cdots + a_nv_n$, and derive a formula for a_i .
 - (c) Is ℓ_1, \ldots, ℓ_n necessarily the dual basis of v_1, \ldots, v_n ? Why or why not?
- 5. Consider the following matrices:

$$A = \begin{bmatrix} 2 & -2 & 14 \\ 0 & 3 & -7 \\ 0 & 0 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & -4 & 85 \\ 1 & 4 & -30 \\ 0 & 0 & 3 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}.$$

A straightforward calculation shows that the characteristic polynomials are

$$p_A(s) = p_B(s) = p_C(s) = (s-2)^2(s-3).$$

- (a) Find the eigenvectors and the minimal polynomials of each matrix
- (b) Find a basis $\{v_1, v_2, v_3\}$ for \mathbb{R}^3 where $Bv_1 = 3v_1$, $Bv_2 = 2v_2$, and $(B 2I)v_3 = v_2$. Write the matrix of this linear map with respect to this new basis.
- (c) Repeat the previous step for the matrix C.