Read: Lax, Chapter 7, pages 89–100.

1. Let X be the space of continuous complex-valued functions on [-1, 1] and define an inner product on X by

$$(f,g) = \int_{-1}^{1} f(s)\overline{g(s)} \, ds \, .$$

Let m(s) be a continuous function of absolute value 1, that is, $|m(s)| = 1, -1 \le s \le 1$. Define M to be multiplication by m:

$$(Mf)(s) = m(s)f(s) \,.$$

Show that M is unitary.

- 2. Let A be a linear map of a finite-dimensional complex inner product space X.
 - (a) A matrix is normal if $AA^* = A^*A$. It is unitarily similar to a diagonal matrix if $A = U^*DU$ for a diagonal matrix D and unitary matrix U. Show that these conditions are equivalent.
 - (b) Prove that if A is normal then it has a square-root, that is, a matrix B such that $A = B^2$. Is B necessarily normal? Unique?
 - (c) Suppose that A is diagonalizable. Prove that A is normal if and only if each eigenvector of A is an eigenvector of A^* .
- 3. Let S be the cyclic shift mapping of \mathbb{C}^n , that is, $S(z_1, \ldots, z_n) = (z_n, z_1, \ldots, z_{n-1})$.
 - (a) Prove that S is unitary.
 - (b) Determine the eigenvalues and eigenvectors of S.
 - (c) Find an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of S.
- 4. (a) Write the equation $5x_1^2 6x_1x_2 + 5x_2^2 = 1$ as $x^T A x = 1$.
 - (b) Write $A = P^T D P$, where D is a diagonal matrix and P is orthogonal with determinant 1.
 - (c) Sketch the graph of the equation $x^T D x = 1$ in the $x_1 x_2$ -plane.
 - (d) Use a geometric argument applied to part (c) to sketch the graph of $x^T A x = 1$.
- 5. Repeat the previous problem for the equation $2x_1^2 + 6x_1x_2 + 2x_2^2 = 1$.