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Preliminaries

Goal
Abstract the concept of a matrix as a linear mapping between vector spaces.
Advantages:

m simple, transparent proofs;

m better handles infinite dimensional spaces.

Definition
A linear map (or mapping, transformation, or operator) between vector spaces X and U over
K is a function T: X — U that is:

(i) additive: T(x+y) = T(x)+ T(y), forall x,y € X;

(if) homogeneous: T(ax) = aT(x), forall x € X, a€ K.

The domain space is X and the target space is U.

Usually we'll write Tx for T(x), and so the additive property is just the distributive law:

T(x+y)=Tx+ Ty.
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Examples of linear maps

Examples

(i) Any isomorphism;

(i) X = U = {polynomials of degree < nins}, T = %.

(i) X = U=R? T = rotation about the origin.

(iv) X any vector space, U = K (1-dimensional), T any £ € X’.

1
() X=U=G®, (TA= [ f)x=y?d.
(vi) X =R", U=R", u= Tx, where y; :Zt,jxj-, i=1,...,m.
j=1

(vii) X = U = {piecewise cont. [0,00) — R of “exponential order” },
(TF)(s) = / f(t)e *t dt. “Laplace transform’
0
(viii) X = U = {functions with [ _|f(x)|dx < oo},

(TF)(&) = / f(x)e’fx dx. “Fourier transform’

— o0
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Basic properties

Theorem 3.1

Let T: X — U be a linear map.

(a) The image of a subspace of X is a subspace of U.
(b) The preimage of a subspace U is a subspace of X.

(Proof is a HW exercise.)

Definition
The range of T is the image Ry := T(X). The rank of T is dim Rr.
The nullspace of T is the preimage of 0:

N7 =T }0)={xe X: Tx=0}.

The nullity of T is dim Nt.

M. Macauley (Clemson) Linear maps

Math 8530, Spring 2017

4/19


mailto:macaule@clemson.edu

Rank-nullity theorem

Theorem 3.2
Let T: X — U be a linear map. Then dim Nt + dim Ry = dim X.

Proof

Since T maps Nt to 0, then Tx; = Txp if x1 = xp mod Nr.

Thus, T extends to a well-defined map on the quotient space X/N7:
T: X/Nr — U, T{x} = Tx.

Note that this map is 1-1, and so dim(X/Nt) = dim Rt.

Therefore, dim X = dim Nt + dim X /Nt = dim Nt + dim Rr.
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Consequences of the rank-nullity theorem

Corollary A
Suppose dim U < dim X. Then Tx = 0 for some x # 0.

Proof
We have dim Rt < dim U < dim X, so by the R-N Theorem, dim Nt > 0.

Thus, there is some nonzero x € Nt. O

Example A

Take X =R", U =R™, with m < n. Let T: R” — R™ be any linear map (see
Example (vi)).

Since m = dim U < dim X < n, Corollary A implies that the system of m equations

n
D tix=0 i=1,...,m
j=1

has a non-trivial solution, i.e., not all x; = 0.
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Consequences of the rank-nullity theorem

Corollary B
Suppose dim X = dim U and the only vector satisfying Tx =0 is x = 0. Then Rt = U.

Proof
We have Nt = {0}, which means that dim N7 = 0.

Clearly, Rt < U ["“is a subspace of']. We just need to show they have the same dimension.

By the R-N Theorem, dim U = dim X = dim Ry + dim N+ = dim Ry. |
v
Example B
n
Take X = U =R", and T: R" — R" given bth,-ij-: uj, fori=1,... n.
j=1
n
If the related homogeneous system of equations Z tjx; =0, for i =1,...,n, has only the
j=1
trivial solution x; = - - - x, = 0, then the inhomogeneous system T has a unique solution for

all ug ..., xn.

[Reason: T: R" — R" is an isomorphism.]
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Applications of the rank-nullity theorem
Application 1: Polynomial interpolation
Take X = {p € C[x] : deg p < n}, U=C", and let sy, ...,s, € C all be distinct. Define

T:X—=U, TP:(P(Sl),~-~,P(5n))~

Suppose Tp = 0 for some p € X. Then p(s1) = --- = p(sn) = 0, which is impossible
because p has at most n — 1 distinct roots.

Therefore N7 = {0}, and so Corollary B implies that R = U.

Application 2: Average values of polynomials
Let X = {p € R[x] : degp < n}, U=TR", and I, ..., I, be pairwise disjoint intervals on R.

The average value of p over /; is the integral

_ 1
pj = —/p(s)ds.
11 Jy;

Define T: X — U by Tp = (p1,.--,Pn)-
Suppose Tp = 0. Then p; = 0 for all j, and so p (if nonzero) must change sign in /;.
But this would imply that p has n distinct roots, which is impossible.

Thus, N7 = {0}, and so Ry = U.

v
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Application to numerical analysis

Application 3: Numerical solutions to Laplace’s equation
B q q 82 82 . R
Laplace’s equation is Au = uxx + uyy, =0, where A = 52 T 9,2 Isa linear operator.

Solutions to Laplace’s PDE (“harmonic functions”) are the functions in the nullspace of A.

If we fix the value of u on the boundary of a region G C R?, the solution to the boundary
value problem Au = 0 is as “flat as possible”. [Think: plastic wrap stretched around 9G.]

This models steady-state solutions to the heat equation PDE: u; = Auw.

The finite difference method is a way to solve Au = 0 numerically, using a square lattice
with mesh spacing h > 0.

At a fixed lattice point O, let ug be the value of u at O, and uyy, ug, uy, us be the values
at the neighbors.

We can approxmiate the derivatives with centered differences:

_ Uw —2up + ug __ un —2up + us
Usey R — Uy R — e
u u u u
Plugging this back into Au = 0 gives up = w i.e., up is the average of its

4
four neighbors.
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Application to numerical analysis (cont.)

Recall that we are trying to solve an inhomogeneous boundary value problem for Laplace’s
equation
Au=0, U|BG:f(X7y)7éo'

Claim

The homogeneous equation: Au = 0, where u = 0 on JG, has only the trivial solution
up = 0 for all (x,y) € G.

Proof
Let O be the lattice point at which u achieves its maximum value.

. uw + uy + ug + us
Since up = - then vy = uy = uy = ug = us.

Repeating this, we see that all lattice points take the same value for u, and so u = 0.

By the result in Example B, the related inhomogenous system for Au = 0, with arbitrary
(non-zero) boundary conditions has a unique solution.

O

4
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Algebra of linear mappings
Definition
Let S, T: X — U be linear maps. Define

m T+ S by (T+S)(x) = Tx+ Sx for each x € X.
m aT by (aT)(x) = T(ax) for each x € X, a € K.

Easy fact

The set of linear maps from X — U, denoted .Z(X, U), or Hom(X, U), is a vector space.

Theorem 3.3 (HW exercise)
If T: X - Uand S: U— V are linear maps, then sois (So T): X — V.

Moreover, composition is distributive w.r.t. addition. That is, if P, T: X — U and
R,S: U — V, then

(R+S)oT=RoT+SoT, So(T+P)=SoT+SoP.

Remarks
m We usually just write So T as just ST.
m In general, ST # TS (note that TS may not even be defined).
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Invertibility
Definition

A linear map T is invertible if it is 1-1 and onto (i.e., if it is an isomorphism). Denote the
inverse by T—1.

Exercise

If T is invertible, then TT~1 is the identity.

Theorem 3.4 (exercise)
Let T: X — U be linear.
(i) If T is linear, then so is T—L.
(i) If S and T are invertible and ST defined, then it is invertible with (ST)~! = T-15-1.

v

Examples
(ix) Take X = U =V =R[s], with T = % and S = multiplication by s.

(x) Take X =U=V = R3, with S a 90°-rotation around the x; axis, and T a 90°-rotation
around the xp axis.

In both of these examples, S and T are linear with ST # TS. (Which are invertible?)
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Transposes
Let T: X — U be linear and £ € U’ (recall: £: U — K).

X
The composition m := £T is a linear map X — K, i.e., an element of X’. "'
Since T is fixed, this defines an assignment of each me X' to £ € U'. T K
This defines the following linear map, called the transpose of T: /

U

T: U — X, T :l—m,
Using scalar product notation we can rewrite m(x) = £(T(x)) as (m,x) = (£, Tx).
Key property
The transpose of T: X — U is the (unique) map T': U’ — X’ that satisfies m = T'¢, i.e.,

(T'e,x) = (¢, Tx), forall xe X, £e U .

Caveat: We are writing £T for £o T, but T'¢ for T'(£) (much like Tx for T(x)).

Properties (HW exercise)

Whenever meaningful, we have

(STY =TS, (T+R/=T+R, (T7Y=(T)".
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Transposes

Examples (cont.)

N
(xi) Let X = RN, U=RM, and Tx = u, where u; = ZtUXJ
j=1

By definition, for some 41,...,¢m € K,

M M
(u)y=> "t =Y 4
= =

N N N M N
g | =D D bty = | Gy tixg | =D mpx
1 —1 j=1

i=1 j i=1 j=1

This gives us a formula for m = (my, ..., my), where (¢, u) = (m, x).

We'll see later that if we express T in matrix form, then T’ is formed by making the rows of
T the columns of T'.
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Transposes

Proposition
If X" and U" are canonically identified with X and U, respectively, then T/ = T. O

Theorem 3.5

The annihilator of the range of Tis the nullspace of its transpose, i.e., R% = N7/.

Proof
By definition, RE = {telU :(¢t,u)=0 Yue R}
= {elU:(Tx)=0 Vx e X}
= {{elU :(T'tx)=0 Vxe X}
= Np.
Thus, £ € RE iff T'¢ =0, i.e., iff £ € Np/. O

Applying L to both sides of R+ = Ny, (Theorem 3.5) yields the following:

The range of T is the annihilator of the nullspace of T/, i.e., R = N%,.

Corollary 3.5
]

M. Macauley (Clemson) Linear maps Math 8530, Spring 2017 15 /19


mailto:macaule@clemson.edu

Transposes
Theorem 3.6

For any linear mapping T: X — U, we have dim Rt = dim R7/.

Proof
We can deduce the following easy facts:
m dim R%— +dim R = dim U (Theorem 2.4 applied to R C U);
m dim N7/ + dim R/ = dim U’ (R-N Theorem applied to T': U’ — X');
= dim U =dim U’ (Theorem 2.2).
Now, R+ = N7/ (Theorem 3.5) immediately yields the result. O
4
Corollary 3.6

Let T: X — U be linear with dim X = dim U. Then dim N7 = dim N.

Proof
Apply the R-N Theorem to T: X — U and T': U’ — X’:
m dim Ny =dim X — dim Rr;
m dim N7 = dim U’ — dim R7/.
Now apply dim X = dim U = dim U’ (assumption), and dim R+ = dim R/ (Theorem 3.6). O

v
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Algebra of linear mappings, revisited
Definition

An endomorphism of a vector space X is a linear map from X to itself. Denote the set of
endomorphisms of X by -Z(X, X) or Hom(X, X) or End(X).

Remarks
Z(X, X) is a vector space, but we can also “multiply” vectors; it is an algebra.
It is an associative but noncommutative algebra, with unity /, satisfying Ix = x.

Z(X, X) contains zero divisors: pairs S, T such that ST = 0 buth neither S nor T is zero.

4

Proposition

If A€ Z(X,X) is a left inverse of B € Z(X, X) [i.e., AB =[], then it is also a right inverse
i.e., BA=I]. O
Definition

The invertible elements of .Z (X, X) forms the general linear group, denoted GL(n, K), where
n=dim X.

Every S € GL(n, K) defines a similarity transformation of .Z(X, X), sending
M — Ms := SMS—1, for each M € .Z(X, X). We say M and Ms are similar.
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Similarity
Theorem 3.7
Every similarity transform is an automorphism ["“structure-preserving bijection”] of £ (X, X):
(kM)s = kMs, (M + N)s = Ms +Ns, ~ (MN)s = MsNs .

Moreover, the set of similarity transforms forms a group under (Ms)t := Mg, called the
inner automorphism group of GL(n, K).

Proof

Verification of (kM)s = kMs, and (M + N)s = Ms + N is trivial.
Next, observe that MsNg = (SMS—1)(SNS—1) = SMNS—! = (MN)s.
Finally, (Ms)T = T(SMS—1)T~! = (TS)M(TS)~! = Mrs.

Checking the group axioms is a straight-forward exercise. |

Theorem 3.8 (exercise)
Similarity is an equivalence relation, i.e., it is:
(i) Reflexive: M ~ M;
(ii) Symmetric: L ~ M implies M ~ L;
(iii) Transitive: L ~ M and M ~ N implies L ~ N. O
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Algebra of linear mappings

Theorem 3.9 (HW exercise)
If either A or B in Z(X, X) is invertible, then AB and BA are similar. DJ

Given any A € Z(X, X) and polynomial p(s) = ays" + --- + ais + ag, consider the
polynomial p(A) = ayAN 4 --- + a1 A+ apl.

The set of polynomials in A is a commutative subalgebra of Z(X, X). [to be revisited]

Miscellaneous definitions

m A linear map P: X — X is a projection if P? = P.

m The commutator of A, B € .£(X, X) is [A, B] := AB — BA, which is 0 iff A and B
commute.

Examples (cont.)

(xii) If X = {f : R — R, contin.}, then the following maps P, Q € Z(X, X) are projections:

m (Pf)(x) = W; this is the even part of f.
m (Qf)(x) = W; this is the odd part of f.

Note that f = Pf + Qf for any f € X.

v
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