Math 2080: Differential Equations
 Worksheet 1.2: Plotting solutions to differential equations

NAME:

Consider the ODE $y^{\prime}=y-t$.

1. Draw the $t y$-plane (i.e., t on the x-axis, and $y(t)$ on the x-axis). Draw a dot at each integer lattice point at each (t, y), where $t, y=-1,0,1$. At each of these nine points, compute $y^{\prime}(t)$. On the $t y$-plane, draw a "hash mark" at (t, y) with slope $y^{\prime}(t)$.
2. In this problem, we will use a better method to sketch the slope field of $y^{\prime}=y-t$ using isoclines.
(a) Determine the set of points for which $y^{\prime}=0$ (it will be a line - set $y^{\prime}=0$ and solve for y.)
(b) Repeat the previous step except for $y^{\prime}=c$, for various values of $c: 1,2,3,-1,-\frac{1}{2}$.
(c) Sketch the lines you found above on the $t y$-plane, which are called isoclines. Along each isocline, sketch the hash-marks of the corresponding slope, $y^{\prime}=c$.
(d) In the slope field above, sketch the three particular solution curves that satisfy $y(0)=1$, $y(0)=-\frac{3}{4}$, and $y(1)=-\frac{3}{4}$, respectively.
3. Find the steady-state solutions to the automonous ODE $y^{\prime}=(y+2)(y-1)$. Sketch these solutions on the $t y$-plane, as well as the curves of three three particular solutions that satisfy $y(0)=-3, y(0)=0$, and $y(0)=3$, respectively.
