Math 2080: Differential Equations
 Worksheet 1.3: Approximating solutions to differential equations

NAME:

1. Consider the initial value problem $y^{\prime}=t+y, y(0)=1$.
(a) When computing a solution by hand using Euler's method, it is beneficial to arrange your work in a table, as shown below where the first step is computed. Continue with Euler's method using step-size $h=0.1$ and complete all missing entries of the table.

k	t_{k}	y_{k}	$f\left(t_{k}, y_{k}\right)=t_{k}+y_{k}$	h	$f\left(t_{k}, y_{k}\right) \cdot h$
0	0.0	1.0	1.0	0.1	0.1
1	0.1	1.1			
2	0.2				
3	0.3				
4	0.4				
5	0.5				

(b) The general solution of $y^{\prime}=t+y$ is $y(t)=C e^{t}-t-1$. Using this, compute the actual value of $y(0.5)$. Use a calculator to see how close this is to the approximated answer you got using Euler's method.

