Math 2080: Differential Equations Worksheet 3.4: Simple harmonic motion

NAME:

When a 3 kg mass is hung from a spring, the spring is displaced by 1 m . Now, suppose that the mass is hanging from rest and then given a sharp jolt downwards so its initial velocity is $1 \mathrm{~m} / \mathrm{sec}$. We will set up and solve an initial value problem that models this.
(a) Sketch this mass-spring system, before and after the mass is place on the spring. (Let $x=0$ be the height of the spring without the mass).
(b) At equilibrium, the spring force $k x_{0}$ equals the gravitational force, $m g$, in magnitude. Use this to solve for the spring constant k.
(c) Newton's $2^{\text {nd }}$ law tells us that $F=m x^{\prime \prime}$, which is equal to the sum of the forces (gravitational and spring). Write down a second-order differential equation that models this. Include both initial conditions, $x(0)$ and $x^{\prime}(0)$.
(d) Find the general solution to this ODE. Is there a steady-state solution? If so, describe it.
(e) Solve the initial value problem.

