Math 2080: Differential Equations Worksheet 3.5: Damped harmonic motion

NAME:

1. For the following exercises, rewrite the given function in the form

$$
y=A \cos (\omega t-\phi)=A \cos \left(\omega\left(t-\frac{\phi}{\omega}\right)\right),
$$

and then plot the graph of this function.
(a) $y=3 \cos 2 t+4 \sin 2 t$
(b) $y=3 \cos 2 t-4 \sin 2 t$
(c) $y=-3 \cos 2 t-4 \sin 2 t$
2. Consider the undamped oscillator

$$
m x^{\prime \prime}+k x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=v_{0} .
$$

Write the general solution of this initial value problem in the form $x(t)=a \cos \omega t+b \sin \omega t$ (i.e., determine a, b, and ω.), and then write it in the form $x(t)=A \cos (\omega t-\phi)$ (i.e., determine A).
3. The function $x(t)=\cos 6 t-\cos 7 t$ has mean frequency $\bar{\omega}=13 / 2$ and half difference $\delta=1 / 2$. Thus,

$$
\cos 6 t-\cos 7 t=\cos \left(\frac{13}{2}-\frac{1}{2}\right) t-\cos \left(\frac{13}{2}+\frac{1}{2}\right) t=2 \sin \frac{1}{2} t \sin \frac{13}{2} t
$$

Use a computer or calculator to plot both $f(t)=\cos 6 t-\cos 7 t$ and the "envelope" $g(t)=2 \sin \frac{1}{2} t$ on the same set of axes.
4. Let $\omega_{0}=11$. Use a computer to plot the graph of the function

$$
x(t)=\frac{\cos \omega t-\cos \omega_{0} t}{\omega_{0}^{2}-\omega^{2}}
$$

for $\omega=9,10,10.5,10.9$, and 10.99 on the time interval $[0,24]$. Explain how these solutions approach the resonance solution as $\omega \rightarrow \omega_{0}$.

