Math 2080: Differential Equations Worksheet 3.6: Variation of parameters

T		- 7∧	ΛТ	ъ.
1	Δ	-IV	ш	٠. •
T 4	Δ	_⊥ν		<i>_</i>

Consider the inhomogeneous differential equation $y'' + 9y = \sec 3t$.

- (a) Solve the related homogeneous equation, $y_h'' + 9y_h = 0$, by inspection.
- (b) If $y_h(t) = C_1 y_1(t) + C_2 y_2(t)$ is your answer to the previous part, then assume that there is a particular solution to the original ODE of the form $y_p = v_1 y_1 + v_2 y_2$. Compute y'_p .

(c) The y'_p from the previous part should have four terms; one each with v_1 , v_2 , v'_1 , and v'_2 . Eliminate the two terms involving v'_1 and v'_2 by setting their sum equal to zero. This leaves just two terms in y'_p . Now compute y''_p .

Written by M. Macauley

(d) Plug $y_p = v_1 y_1 + v_2 y_2$ and y_p'' from Part (c) back into the original ODE. Things should cancel, leaving you with an equation involving v_1' and v_2' (no v_1 or v_2).

(e) Write a system of two first order ODEs involving v'_1 and v'_2 . One equation comes from Part (c) and the other from Part (d). Write this in matrix form as well.

(f) Solve for v'_1 and v'_2 by multiplying your two equations by suitible functions and and or subtracting them to eliminate the other.

(g) Integrate to find v_1 and v_2 (feel free to use a computer). Write the general solution to the original ODE.

Written by M. Macauley 2