Math 2080: Differential Equations Worksheet 3.9: The method of Frobenius

NAME:

In this problem, you will solve $3 x y^{\prime \prime}+y^{\prime}+y=0$ using the method of Frobenius.
(a) Write this equation as $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$. Determine whether $x_{0}=0$ is an ordinary, regular singular, or irregular singular point.
(b) Assume there is a solution of the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r}$. Plug this back into the ODE.
(c) Factor out x^{r}, and then shift indices so you can combine everything into a single sum. Don't forget to "pick off" the $n=-1$ term to get the indicial equation.
(d) Solve the indicial equation for r, and determine the recursion formula for the a_{i} 's.
(e) For each value of r, write out a generalized power series and the recursion formula for the coefficients.
(f) What is the radius of convergence of this solution? (Hint: First compute the radius of convergence of $x P(x)$ and $x^{2} Q(x)$.)

