Math 2080: Differential Equations Worksheet 4.4: Solving a 2×2 system of ODEs

NAME:

Consider the system of differential equations: $\begin{cases}x_{1}^{\prime}=-2 x_{1}+x_{2}-12, & x_{1}(0)=5 \\ x_{2}^{\prime}=4 x_{1}+x_{2}-18, & x_{2}(0)=20\end{cases}$

1. Write this in matrix form, $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{b}$, and find the steady-state solution, $\boldsymbol{x}_{s s}$.
2. Make a change of variables to transform the system into a homogeneous system.
3. Solve the homogeneous system. The eigenvalues of \boldsymbol{A} are $\lambda_{1}=-3, \lambda_{2}=2$, with eigenvectors $\boldsymbol{v}_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\boldsymbol{v}_{2}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$.
4. Solve the solution to the original system of differential equations, by writing $\boldsymbol{x}=\boldsymbol{x}_{h}+\boldsymbol{x}_{s s}$.
5. Sketch the phases portrait of the homogeneous system, and the inhomogeneous system. Also sketch the particular solutions satisfying the given initial conditions.
