Math 2080: Differential Equations

Worksheet 4.5: Phase portraits with real eigenvalues

NAME:

Suppose the eigenvalues and eigenvectors of a 2×2 matrix \boldsymbol{A} are given. Write the general solution to the system $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$. Then, sketch the phase portrait (the graph x_{2} vs. x_{1}). Make sure that your sketch is accurate enough that it is clear which way the solution curves "bend", if applicable. Also, you should clearly distinguish between e.g., a line of slope 2 and a line of slope $1 / 2$.

1. $\lambda_{1}=-2, \lambda_{2}=2, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
2. $\lambda_{1}=-2, \lambda_{2}=-3, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
3. $\lambda_{1}=-2, \lambda_{2}=-30, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
4. $\lambda_{1}=2, \lambda_{2}=3, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
5. $\lambda_{1}=0.2, \lambda_{2}=3, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
6. $\lambda_{1}=0, \lambda_{2}=3, \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-3 \\ 1\end{array}\right]$.
