Math 2080: Differential Equations

 Worksheet 4.7: Phase portraits with repeated eigenvalues

 Worksheet 4.7: Phase portraits with repeated eigenvalues}

NAME:

Consider the system of differential equations: $\begin{cases}x_{1}^{\prime}=4 x_{1}+x_{2}, & x_{1}(0)=-1 \\ x_{2}^{\prime}=-1 x_{1}+2 x_{2}, & x_{2}(0)=1\end{cases}$
(a) Write this in matrix form, $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}, \boldsymbol{x}(0)=\boldsymbol{x}_{0}$.
(b) Knowing that \boldsymbol{A} has a repeated eigenvalue, $\lambda_{1,2}=3$, and only one eigenvector, $\boldsymbol{v}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, write down a solution $\boldsymbol{x}_{1}(t)$ to $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$.
(c) To find a second solution, assume that $\boldsymbol{x}_{2}(t)=t e^{3 t} \boldsymbol{v}+e^{3 t} \boldsymbol{w}$. Plug this back into $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ and equate coefficients (of $t e^{3 t}$ and $e^{3 t}$) to get a system of two equations, involving $\boldsymbol{v}, \boldsymbol{w}$, and \boldsymbol{A}.
(d) Solve for \boldsymbol{v} by inspection. Plug this back into the second equation and solve for \boldsymbol{w} (it will involve a constant, C).
(e) Using what you got for $\boldsymbol{v}(t)$ and $\boldsymbol{w}(t)$, write down a solution $\boldsymbol{x}_{2}(t)$ that is not a scalar multiple of \boldsymbol{x}_{1}. (Pick the simplest value of C that works.)
(f) Write down the general solution, $\boldsymbol{x}(t)$. As $t \rightarrow \infty$, which of the three terms of $\boldsymbol{x}(t)$ "grows faster"?
(g) Sketch the phase portrait. To determine which way the curves "sprial", compute $\boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}$ at $\boldsymbol{x}=\left[\begin{array}{c}10 \\ 0\end{array}\right]$ and see if this velocity vector is pointing upwards or downwards.

