Math 2080: Differential Equations
 Worksheet 5.2: Properties \& applications of Laplace transforms

NAME:

The following properties of the Laplace transform will be useful in this worksheet:
(i) $\mathcal{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}$
(iv) $\mathcal{L}\{\sin b t\}(s)=\frac{b}{s^{2}+b^{2}}$.
(ii) $\mathcal{L}\left\{t^{n}\right\}(s)=\frac{n!}{s^{n+1}}$,
(v) $\mathcal{L}\left\{e^{c t} f(t)\right\}(s)=F(s-c)$
(vi) $\mathcal{L}\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$
(iii) $\mathcal{L}\{\cos b t\}(s)=\frac{s}{s^{2}+b^{2}}$.
(vii) $\mathcal{L}\left\{y^{\prime \prime}(t)\right\}(s)=s^{2} Y(s)-s y(0)-y^{\prime}(0)$

1. Compute the Laplace transform of $t e^{3 t}$ two ways: using Properties (v) and (vi).
2. Compute the Laplace transform of $e^{2 t} \cos 6 t$.
3. Compute the inverse Laplace transform of $Y(s)=\frac{3}{2-6 s}$. (Factor out -6)
4. Compute the inverse Laplace transform of $Y(s)=\frac{1}{(s-3)(s+1)}$. (Partial fractions)
5. Compute the inverse Laplace transform of $Y(s)=\frac{1}{s^{2}+4 s+13}$. (Complete the square)
6. Compute the inverse Laplace transform of $Y(s)=\frac{s}{s^{2}+4 s+13}$. (Complete the square)
7. In this problem, you will solve the initial value problem: $y^{\prime \prime}-y=e^{2 t}, y(0)=1, y^{\prime}(0)=0$.
(a) Take the Laplace transform of the initial value problem and solve for Y.
(b) Use partial fraction decomposition to break up your equation for $Y(s)$.
(c) Take the inverse Laplace transform of each fraction to get the solution to the initial value problem.
