Math 2080: Differential Equations
 Worksheet 5.3: Discontinuous forcing terms

NAME:

The following properties of the Laplace transform will be useful in this worksheet:
(i) $\mathcal{L}\left\{e^{a t}\right\}(s)=\frac{1}{s-a}$
(iii) $\mathcal{L}\{\sin b t\}(s)=\frac{b}{s^{2}+b^{2}}$.
(iv) $\mathcal{L}\left\{y^{\prime \prime}(t)\right\}(s)=s^{2} Y(s)-s y(0)-y^{\prime}(0)$
(ii) $\mathcal{L}\left\{t^{n}\right\}(s)=\frac{n!}{s^{n+1}}$,
(v) $\mathcal{L}\{f(t-c) H(t-c)\}(s)=e^{-c s} F(s)$

1. Compute $\mathcal{L}\left\{(t-2)^{2} H(t-2)\right\}(s)$.
2. Compute $\mathcal{L}\left\{t^{2} H(t-2)\right\}(s)$.
3. Compute $\mathcal{L}\left\{e^{t-3} H(t-3)\right\}(s)$.
4. Compute $\mathcal{L}\left\{e^{t+3} H(t-3)\right\}(s)$.
5. Consider the initial value problem $y^{\prime \prime}+y=f(t), y(0)=0, y^{\prime}(0)=1$, where $f(t)= \begin{cases}t, & 0 \leq t \leq 3 \\ 3, & t>3\end{cases}$
(a) Sketch $f(t)$, and write it using the Heavyside function.
(b) Take the Laplace transform of the differential equation, and solve for $Y(s)$.
(c) Use partial fractions to decompose $Y(s)$ into four terms. [Note: $\frac{1}{s^{2}\left(s^{2}+1\right)}=\frac{1}{s^{2}}-\frac{1}{s^{2}+1}$.]
(d) Apply the inverse Laplace transfrom to each term and write the solution to the IVP using the Heavyside function.
(e) Write the solution as a piecewise function (i.e., not using the Heavyside function).
