Math 2080: Differential Equations

Worksheet 7.3: The transport equation

NAME:

1. The PDE $u_{t t}=c^{2} u_{x x}$ is called the wave equation. Here it is below written in several different ways.

$$
\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) u=\left(\frac{\partial^{2}}{\partial t^{2}}-c \frac{\partial^{2}}{\partial x^{2}}\right) u=\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=u_{t t}-c^{2} u_{x x}=0
$$

Let $f(x)$ and $g(x)$ be differentiable functions, and define $u(x, t)=f(x+c t)+g(x-c t)$. Compute $u_{t t}$ and $u_{x x}$ and check that $u(x, t)$ solves the wave equation.
2. Consider the following initial value problem for the wave equation:

$$
u_{t t}=c^{2} u_{x x}, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=0 .
$$

If $f(x)$ is any differentiable function, then define $u(x, t)=\frac{1}{2} f(x+c t)+\frac{1}{2} f(x-c t)$.
(a) Let $f(x)=e^{-x^{2} / 2}$. Sketch $u(x, 0)$ and $u(x, t)$ for some $t>0$.
(b) Compute $u_{t}, u_{t t}$, and $u_{x x}$ and verify that $u(x, t)$ solves the IVP above.

