Math 2080: Differential Equations Worksheet 7.4: The wave equation

NAME:

Let $u(x, t)$ be defined for $0 \leq x \leq 1$ and $t>0$, and consider the following PDE

$$
u_{t t}+2 \beta u_{t}=u_{x x}, \quad u(0, t)=u(\pi, t)=0, \quad u(x, 0)=x(\pi-x), \quad u_{t}(x, 0)=1 .
$$

where $0<\beta<1$ is a constant. This is the wave equation where the u_{t} term models transverse vibrations being in a medium that imparts a resistance proportional to the instantaneous velocity.
(a) Describe and sketch this situation at $t=0$.
(b) Assume that there is a solution of the form $u(x, t)=f(x) g(t)$. Plug this back into the PDE and get an ODE for $g(t)$ and a BVP for $f(x)$.
(c) The BVP should be familiar: $f^{\prime \prime}=-\lambda f, f(0)=f(\pi)=0$, and we've seen that $\lambda_{n}=n^{2}$ for $n=$ $0,1,2, \ldots$ and $f_{n}(x)=b_{n} \sin n x$. Solve the ODE for $g(t)$.
(d) Write down the general solution to this PDE.
(e) Use the initial conditions to find the particular solution solving the boundary and initial conditions.
(f) What is the long-term behavior of this system? Give both a mathematical and physical justification.

