Math 2080: Differential Equations
 Worksheet 7.6: Laplace's equation

NAME:

In this worksheet, you will solve the following three different instances of Laplace's equation on a square region, where $u(x, y)$ is defined for $0 \leq x \leq \pi$ and $0 \leq y \leq \pi$:
(i) $\quad \nabla^{2} u=0, \quad u(x, 0)=u(0, y)=u(\pi, y)=0, \quad u(x, \pi)=\sin x$.
(ii) $\quad \nabla^{2} u=0, \quad u(x, 0)=u(0, y)=u(x, \pi)=0, \quad u(\pi, y)=\sin 2 y$.
(iii) $\quad \nabla^{2} u=0, \quad u(x, 0)=u(0, y)=0, \quad u(x, \pi)=\sin x, \quad u(\pi, y)=\sin 2 y$.
(a) Sketch the solutions to each of these three BVPs. Hint: it is enough to sketch the boundaries, and then use the fact that the solutions are harmonic functions.
(b) Solve the following BVP from (i) for $u(x, y)$:

$$
\nabla^{2} u=0, \quad u(x, 0)=u(0, y)=u(\pi, y)=0, \quad u(x, \pi)=\sin x
$$

(c) Solve the following BVP from (ii) for $u(x, y)$:

$$
\nabla^{2} u=0, \quad u(x, 0)=u(0, y)=u(x, \pi)=0, \quad u(\pi, y)=\sin 2 y .
$$

(d) Using superposition, solve following the BVP from (iii) for $u(x, y)$:

$$
\nabla^{2} u=0, \quad u(x, 0)=u(0, y)=0, \quad u(x, \pi)=\sin x, \quad u(\pi, y)=\sin 2 y .
$$

