Math 2080: Differential Equations
 Worksheet 7.7: The two-dimensional heat equation

NAME:

1. Consider the following initial/boundary value problem for the heat equation in a square region, where the function $u(x, y, t)$ is defined for $0 \leq x \leq \pi, 0 \leq y \leq \pi$ and $t \geq 0$.

$$
\begin{array}{ll}
u_{t}=c^{2} \nabla^{2} u, & u(x, 0, t)=u(x, \pi, t)=u(0, y, t)=u(\pi, y, t)=0 \\
& u(x, y, 0)=2 \sin x \sin y+5 \sin 2 x \sin y .
\end{array}
$$

(a) Briefly describe, and sketch, a physical situation which this models. Be sure to explain the effect of the boundary conditions and the initial condition.
(b) Assume that there is a solution of the form $u(x, y, t)=f(x, y) g(t)$. Find $u_{x x}, u_{y y}$, and u_{t}.
(c) Plug $u=f g$ back into the PDE and divide both sides by $f g$ (i.e., "separate variables") to get the eigenvalue problem. Briefly justify why this quantity must be a constant. Call this constant λ. Write down an ODE for $g(t)$, and a PDE for $f(x, y)$ (the Helmholz equation). Include four boundary conditions for $f(x, y)$.
(d) Solve the Helmholz equation and determine λ. You may assume that $f(x, y)=X(x) Y(y)$, then separate variables.
(e) Solve the ODE for $g(t)$.
(f) Find the general solution of the boundary value problem. It will be a superposition (infinite sum) of solutions $u_{n m}(x, y, t)=f_{n m}(x, y) g_{n m}(t)$.
(g) Find the particular solution to the initial value problem that additionally satisfies the initial condition $u(x, y, 0)=2 \sin x \sin y+5 \sin 2 x \sin y$.
(h) What is the steady-state solution? Give a mathematical and intuitive (physical) justification.
2. Consider the following inhomogeneous BVP for the heat equation in a square region.

$$
u_{t}=c^{2} \nabla^{2} u, \quad u(x, 0)=u(0, y)=0, \quad u(x, \pi)=\sin x, \quad u(\pi, y)=\sin 2 y .
$$

Without knowing the initial conditions, determine the steady-state solution. (Hint: If you use your result from the previous worksheet, then almost no actual work is needed on this problem.)

