Math 2080: Differential Equations Worksheet 7.8: The two-dimensional wave equation

NAME:

1. Consider the following initial/boundary value problem for the 2 D wave equation.

$$
\begin{array}{ll}
u_{t t}=c^{2} \nabla^{2} u, \quad u(x, 0, t)=u(x, \pi, t)=u(0, y, t)=u(\pi, y, t)=0 \\
& u(x, y, 0)=x(\pi-x) y(\pi-y), \quad u_{t}(x, y, 0)=1 .
\end{array}
$$

(a) Briefly describe a physical situation which this models. Be sure to explain the effect of the boundary conditions and the initial conditions. Sketch the initial displacement, $u(x, y, 0)$.
(b) Assume that the solution has the form $u(x, y, t)=f(x, y) g(t)$. Find $u_{x x}, u_{y y}, u_{t}$, and $u_{t t}$.
(c) Plug $u=f g$ back into the PDE and separate variables (divide both sides by $c^{2} f g$ to get the eigenvalue problem. Briefly justify why this quantity must be a constant, say λ. Write down an ODE for $g(t)$, and a PDE for $f(x, y)$ (the Helmholz equation). Include four boundary conditions for $f(x, y)$.
(d) You may assume that $\lambda=-\left(n^{2}+m^{2}\right)$, and that the solution to the Helmholz equation is $f(x, y)=b_{n m} \sin n x \sin m y$. Solve the ODE for $g(t)$.
(e) Find the general solution of the boundary value problem. It will be a superposition (infinite sum) of solutions $u_{n m}(x, y, t)=f_{n m}(x, y) g_{n m}(t)$.
(f) Find (or better yet, recall from your notes) the Fourier sine series for the following two functions:

$$
p(x)=x(\pi-x), \quad \text { defined on }[0, \pi], \quad r(x)=1, \quad \text { defined on }[0, \pi] .
$$

(g) Find the particular solution to the initial value problem that additionally satisfies the initial conditions.
(h) What is the long-term behavior of $u(x, y, t)$, i.e., as $t \rightarrow \infty$. Give a mathematical and intuitive (physical) justification.

