Math 2080: Differential Equations Worksheet 8.1: Modeling with nonlinear systems

T		- 7∧	ΛТ	ъ.
1	Δ	-IV	ш	٠. •
T 4	Δ	_⊥ν		<i>_</i>

1. The following is called the SIS model:

$$S' = -\alpha SI + \gamma I$$
$$I' = \alpha SI - \gamma I$$

(a) What disease might be modeled well by the SIS framework?

(b) Find all steady-state solutions (S^*, I^*) . Are these biologically reasonable? An steady-state for which $I^* > 0$ is called an *endemic equilibrium*. Can an SIS disease be endemic?

2. Recall the SIR model in epidemiology:

$$S' = -\alpha SI + \gamma I$$
$$I' = \alpha SI - \gamma I$$
$$R' = \gamma R$$

If I'(0) > 0, then the disease will take of and become an epidemic. However, if I'(0) < 0, then the disease will quickly die off. The basic reproductive number of disease is defined as $\mathcal{R}_0 := \frac{\alpha}{\gamma} S_0$.

(a) Using the observation that

$$\mathcal{R}_0 = \frac{\alpha}{\gamma} S_0 = (\alpha S_0)(\gamma^{-1})$$

with

- $\alpha S_0 = \#$ new infections per person per day,
- $\gamma^{-1} = \#$ average duration of infection,

describe what physical quantity \mathcal{R}_0 represents.

(b) Find the threshold T such that if $\mathcal{R}_0 > T$, then the outbreak becomes an epidemic, but if $\mathcal{R}_0 < T$, it dies off.

Written by M. Macauley