clemson-math4190

Matthew Macauley Assignment HW_01_basic_set_theory due 01/18/2019 at 11:59pm EST

1. (2 points) Library/SDSU/Discrete/Sets/VennA1/VennA1.pg Which of the following Venn diagrams corresponds to $A \cap B$?

• A.

• B.

2. (2 points) Library/CollegeOfIdaho/setAlgebra_04_02_Compound Ineq/42IntAlg_01_CompoundIneq.pg

Let $A = \{0, 4, 6, 9, 10\}$, $B = \{0, 5, 9, 10\}$.

Find the following sets in list form. Separate elements with commas. If there are no elements in the set, enter "NONE".

a) $A \cap B =$ _____

b) $A \cup B =$ _____

3. (4 points) Library/ASU-topics/setSets/ur_st_1_2.pg

Let $A = \{2,3,6,7,8\}$, $B = \{4,6,7,8\}$, $C = \{0,1,3,4,5,7\}$. List the elements of the following sets. If there is more than one element write them separated by commas.

$$A \cap B = \{ ___ \}$$
$$A \cup B = \{ ____ \}$$
$$(B \cup C) \cap A = \{ ____ \}$$
$$B \cup (C \cap A) = \{ ____ \}$$

4. (3 points) Library/NAU/setSet/Sets_3.pg

Let U = Universal set = { a,b,c,d,e,1,2,3 } , A = {d,e,c,b,a}, and B = {3,e,1}.

List the elements of the following sets. If there is more than one element write them separated by commas.

1

5. (2 points) Library/NAU/setSet/Sets_4.pg
Let
U = Universal Set= { All college students }
M = { All male students }
S = { All students who smoke }
F = { All Freshmen }
Give a description of "all male students who smoke" in 1

Give a description of "all male students who smoke" in terms of a set

- A. $M \cap S$
- B. $M \cup S$
- C. $F \cap S \cap M$
- D. $\overline{M} \cap \overline{S}$

6. (2 points) Library/SDSU/Discrete/Sets/subsetB3.pg Let R = {numbers divisible by 2}

Determine which of the following sets are subsets of R

- A. {-82, 104, 16}
- B. {1}
- C. {0}
- D. {44,221,90}
- E. {*integers*}

7. (4 points) Library/MontanaState/Sets/1.2B39Sets1.pg

True or False? $\emptyset \in \{0, 2, 6\}$

- A. True
- B. False

True or False? $\emptyset \in \emptyset$

- A. True
- B. False
- D. Paise

True or False? $\emptyset \subset \{0, 2, 6\}$

- A. True
- B. False

True or False? $\emptyset \subset \emptyset$

- A. True
- B. False

8. (3 points) Library/NAU/setFoundations/MAT320_0301.pg

Enter T or F depending on whether the statement is true or false. (You must enter T or F – True and False will not work.)

 $\begin{array}{c} __1. \ \{\emptyset\} \subseteq \{\emptyset, \{\emptyset\}\} \\ __2. \ \emptyset \subseteq \{\emptyset\} \\ __3. \ \{\emptyset\} \subseteq \{\emptyset\} \end{array}$

9. (4 points) Library/Rochester/setSetTheory1/ur_st_1_6.pg
What is the cardinality of each of the following sets?
 (a) Ø

(b) $\{\emptyset\}$

(c) $\{\emptyset, \{\emptyset\}\}$

• A.

 $(d) \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

12. (2 points) Library/SDSU/Discrete/Sets/VennA2/VennA2.pg Which of the following Venn diagrams corresponds to A - B?

13. (4 points) Library/SDSU/Discrete/Sets/cartesianprodB5.pg Let $A = \{5, 8\}$, $B = \{p, q\}$, $C = \{r, v\}$

How many elements are in $A \times B$? _____

How many elements are in $B \times C$?

3

How many elements are in $A \times B \times C$?

Determine $A \times B \times C$ [Note: Enter your answer as a comma-separated list. Pairs should be denoted with parentheses.] {_____}

14. (5 points) Library/ASU-topics/setDiscrete/katie1.6_1.pg

Let A be the following set. A = $\{\emptyset, 1, \{1,2\}\}$. Mark each of the following true T or false F.

 $\begin{array}{c} __1. \ \{\emptyset\} \in P(A) \\ __2. \ \{\{1,2\}\} \subseteq A \\ __3. \ \{1,2\} \subseteq A \\ __4. \ \{\{1,2\}\} \in P(A) \\ __5. \ \{\emptyset,1\} \in P(A) \end{array}$

15. (6 points) Library/NAU/setFoundations/MAT320_0402.pg

Determine whether the given statement is true or false. Write T for true and F for false.

1.	$\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$
2.	$\mathcal{P}(A \setminus B) \subseteq \mathcal{P}(A) \setminus \mathcal{P}(B)$
3.	$\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$

16. (2 points) Library/SDSU/Discrete/Sets/VennB12/VennB12.pg Which of the following Venn diagrams corresponds to $(A \cap B^c) - C$?

• C.

4

17. (2 points) Library/SDSU/Discrete/Sets/VennB3/VennB3.pg Which of the following Venn diagrams corresponds to $(A \cap B) - C$?

18. (2 points) Library/SDSU/Discrete/Sets/VennB10/VennB10.pg Which of the following Venn diagrams corresponds to $A \cup B \cup C^c$?

5

	19. (10 points) local/Library/NAU/setFoundations/MAT320_0302.p
g	

Enter T or F depending on whether the statement is true or false. (You must enter T or F – True and False will not work.)

- $\begin{array}{c} _1. \ A \cap B = A \implies A \subseteq B \\ _2. \ B \subseteq C \implies A \cup B \subseteq A \cup C \\ _3. \ A \cup B \subseteq A \cup C \implies B \subseteq C \\ _4. \ \tilde{A} \subseteq B \implies A \subseteq \tilde{B} \\ _5. \ B \setminus A = \emptyset \implies A \subseteq B \end{array}$
- Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

6