1. (2 points) Library/SDSU/Discrete/Logic/formallogicB21.pg

Negate the following statement:

$$
\text { If } \mathbf{a}=\mathbf{1} \text { and } \mathbf{b}=\mathbf{2}, \text { then } \mathbf{a}+\mathbf{b}=\mathbf{3}
$$

Choose the correct statement:

- A. $a \neq 1$ or $b \neq 2$ and $a+b \neq 3$
- B. $a \neq 1$ or $b \neq 2$ or $a+b \neq 3$
- C. $a=1$ and $b=2$ and $a+b \neq 3$
- D. $a=1$ and $b=2$ or $a+b \neq 3$

2. (2 points) Library/SDSU/Discrete/Logic/formallogicB10.pg Convert the following statement using an "or" structure.
if a is irrational and b is rational, then $a \cdot b$ is irrational.

Choose the correct statement:

- A. a is irrational, or b is rational, or $a \cdot b$ is irrational
- B. a is rational, or b is irrational, or $a \cdot b$ is irrational
- C. a is irrational, or b is rational, and $a \cdot b$ is irrational
- D. a is rational and b is rational, or $a \cdot b$ is irrational

3. (8 points) Library/MontanaState/Misc.Logic/1.5A33Logic1.pg

Are the two sentences logically equivalent?
If John and Fred will go, Jess will go.
If John will go, Jess will go, and if Fred will go, Jess will go.

- A. Yes
- B. No

Are the two sentences logically equivalent?
If James will go, Jack and Melinda will go.
If James will go, Jack will go, and if James will go, Melinda will go.

- A. Yes
- B. No

Are the two sentences logically equivalent?
If Chris or Michael will go, Jess will go.
If Chris will go, Jess will go, and if Michael will go, Jess will go.

- A. Yes
- B. No

Are the two sentences logically equivalent?

If Sam or Bobby will go, Karen will go.
If Sam will go, Karen will go, or if Bobby will go, Karen will go.

- A. Yes
- B. No

4. (8 points) Library/MontanaState/Misc.Logic/1.5B3Logic.pg

Suppose you have four cards, each of which has an integer on one side and a letter on the other. Someone tells you that if the letter is a vowel, the number is even.
Right now you can see the following cards: 4, B, E, 7. To check if the assertion is true, you may need to flip over some cards. Which cards?

Do you need to flip over this card?
4

- A. Yes
- B. No

Do you need to flip over this card?
B

- A. Yes
- B. No

Do you need to flip over this card?
E

- A. Yes
- B. No

Do you need to flip over this card?
7

- A. Yes
- B. No

5. (5 points) Library/MontanaState/Misc.Logic/1.6B13Logic4.pg Suppose this is true: All widgets are gadgets.

Which is the correct conditional form of the sentence?

- A. If it's a widget, then it's a gadget
- B. If it's a gadget, then it's a widget

What can be deduced from that and this additional fact?
It's a gadget

- A. It is not a gadget
- B. It's a widget
- C. It is not a widget
- D. It's a gadget
- E. Nothing

What can be deduced from that and this additional fact? It's not a widget

- A. It is not a gadget
- B. It's a widget
- C. It is not a widget
- D. It's a gadget
- E. Nothing

What can be deduced from that and this additional fact?
It's not a gadget

- A. It's a widget
- B. It is not a gadget
- C. It's a gadget
- D. It is not a widget
- E. Nothing

6. (4 points) Library/Rochester/setDiscrete8Reasoning/ur_dis_8_1. pg

Which rule of inference is used in each of the following arguments? Check the correct answers.

1. Alice is a mathematics major. Therefore, Alice is either a mathematics major or a computer science major.

- A. Hypothetical syllogism.
- B. Modus ponens.
- C. Simplification.
- D. Addition.
- E. Conjunction.
- F. Modus tollens.
- G. Disjunctive syllogism.

2. Colleen is a cat. Colleen is gray. Therefore Colleen is a gray cat.

- A. Addition.
- B. Conjuction.
- C. Disjunctive syllogism.
- D. Hypothetical syllogism.
- E. Simplification.
- F. Modus tollens.
- G. Modus ponens.

3. Steve will work at a computer company this summer. Therefore, this summer Steve will work at a computer company or be a beach bum.

- A. Conjuction.
- B. Disjunctive syllogism.
- C. Modus ponens.
- D. Addition.
- E. Modus tollens.
- F. Simplication.
- G. Hypothetical syllogism.

4. Kangaroos live in Australia and are marsupials. Therefore, kangaroos are marsupials.

- A. Addition.
- B. Disjunctive syllogism.
- C. Hypothetical syllogism.
- D. Simplification.
- E. Conjuction.
- F. Modus ponens.
- G. Modus tollens.

7. (8 points) Library/SUNYSB/contradiction.pg

For the following proof by contradiction provide the justifications at each step, using the following equivalences and inference rules. Use the following keys:

a	Idempotent Law
b	Double Negation
c	De Morgan's Law
d	Commutative Properties
e	Associative Properties
f	Distributive Properties
g	Equivalence of Contrapositive
h	Definition of Implication
i	Definition of Equivalence
j	Identity Laws $(p \vee F=p \wedge T=p)$
k	Tautology $(p \vee \neg p=T)$
l	Contradiction $(p \wedge \neg p=F)$
m	Negation of the goal to prove
n	Modus Ponens
o	Modus Tollens
p	Transitivity of Implication
q	Conjunctive Simplification
r	Conjunctive Addition
s	Disjunctive Addition

We want to prove s by a proof by contradiction from the following propositions.

$\neg s$ by
$\neg p$ by ___ between $p \rightarrow b$ and $\neg b$
$s \wedge T$ by __ between $\neg(s \wedge T) \rightarrow p$ and $\neg p$ previously deduced. s by __ of $s \wedge T$
We have s and $\neg s$ true, therefore we have a contradiction.
8. (6 points) Library/SUNYSB/proofReasons1.pg

For the following proof (of equivalence of 2 formulae) provide the justifications at each step, using the following equivalences. Use the following key:

a	Idempotent Law
b	Double Negation
c	De Morgan’s Law
d	Commutative Properties
e	Associative Properties
f	Distributive Properties
g	Equivalence of Contrapositive
h	Definition of Implication
i	Definition of Equivalence
j	Identity Laws $(p \vee F \equiv p \wedge T \equiv p)$
k	Tautology $(p \vee \neg p \equiv T)$
l	Contradiction $(p \wedge \neg p \equiv F)$

$$
\begin{aligned}
& p \rightarrow(p \wedge q) \equiv \\
& \neg p \vee(p \wedge q) \text { by }-\equiv(\neg p \vee p) \wedge(\neg p \vee q) \text { by } \ldots \equiv(p \vee \neg p) \wedge \\
& (\neg p \vee q) \text { by } \equiv T \wedge(\neg p \vee q) \text { by } _\equiv(\neg p \vee q) \wedge T \text { by }-\equiv \\
& \neg p \vee q \text { by }-
\end{aligned}
$$

