4. (5 points) Library/NAU/setFoundations/MAT320_0503.pg

Determine which of these relations are symmetric. The variables $\mathrm{x}, \mathrm{y}, \mathrm{x}^{\prime}, \mathrm{y}^{\prime}$ represent integers.

- A. $x \sim y$ if and only if $x y \geq 0$.
- B. $x \sim y$ if and only if $x-y$ is a multiple of 10 .
- C. $x \sim y$ if and only if $x+2 y$ is positive.
- D. $x \sim y$ if and only if $x-y$ is positive.
- E. $x \sim y$ if and only if $x y$ is negative.

5. (20 points) Library/ASU-topics/setDiscrete/katie21.pg

Given the following relations on the set of all people. Check ALL correct answers from the following lists:
(a) a is older than b

- A. irreflexive
- B. antisymmetric
- C. transitive
- D. symmetric
- E. reflexive
(b) a and b have a common grandparent
- A. transitive
- B. antisymmetric
- C. reflexive
- D. irreflexive
- E. symmetric
(c) a has the same first name as b
- A. reflexive
- B. transitive
- C. irreflexive
- D. symmetric
- E. antisymmetric
(d) a and b were born on the same day
- A. reflexive
- B. antisymmetric
- C. symmetric
- D. irreflexive
- E. transitive

6. (20 points) Library/ASU-topics/setDiscrete/katie22.pg Given the following relations on the set of all integers where $(x, y) \in R$ if and only if the following is satisfied. (Check ALL correct answers from the following lists):
(a) $x+y=0$

- A. reflexive
- B. irreflexive
- C. transitive
- D. symmetric
- E. antisymmetric
(b) $x-y$ is an integer
- A. transitive
- B. antisymmetric
- C. symmetric
- D. reflexive
- E. irreflexive
(c) $x=2 y$
- A. antisymmetric
- B. reflexive
- C. transitive
- D. irreflexive
- E. symmetric
(d) $x y>1$
- A. reflexive
- B. symmetric
- C. transitive
- D. irreflexive
- E. antisymmetric

7. (5 points) Library/MC/Proofs/Relations/Transitive01.pg

Order 5 of the following sentences so that they form a logical proof of the statement:

Suppose R is a relation on $A=\mathbb{N}$ defined by $(x, y) \in R \Leftrightarrow y<x$.
Prove that R is transitive.

- Let $x, y, z \in \mathbb{N} \ni(x, y) \in R,(y, z) \in R$ and $(x, z) \in R$
- Assume $\exists x, z \in \mathbb{N} \ni(x, z) \in A$
- $y<x$ and $z<y$
- $z<y<x \Rightarrow z<x$
- Let $x, y, z \in \mathbb{N} \ni(x, y) \in R$ and $(y, z) \in R$
- $(x, z) \in R$
- Meditation leads to the next step.
- R is transitive
- $x<y$ and $y<z$

8. (6 points) Library/ASU-topics/setDiscrete/katie23.pg

Suppose R and S are relations on a set A. Select True or False for each statement below.

1. If R and S are reflexive relations, then $R \circ S$ is reflexive. ?
2. If R and S are reflexive relations, then $R \cap S$ is reflexive. ?
3. If R and S are reflexive relations, then $R \cup S$ is reflexive. ?
[^0]
[^0]: Generated by © C)WeBWorK, http://webwork.maa.org, Mathematical Association of America

