1. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati ons/Relations6.pg

In this problem we work out step-by-step the procedure for checking an equivalence relation.

Denote by \mathbb{Z} the set of all integers. Declare that two integers x, y are related if $x-y$ is an integer multiple of 5. In symbols:

$$
x \sim y \Longleftrightarrow 5 \text { divides } x-y
$$

We want to check if this is an equivalence relation. That means we need to check if \sim is
(1) Reflexive
(2) Symmetric
(3) Transitive

We begin with (1). This means checking to make sure that for all integers x, we have $x \sim x$. Recall the definition of \sim for this problem and we see that this is equivalent to saying that for all integers x, we have that $(x-x)$ is an integer multiple of 5 .

Is this true? If so, enter Y; if not, enter an integer for which this is false. \qquad

Next, we check (2). This means checking to make sure that for all integers x, y, we have $x \sim y \Leftrightarrow y \sim x$. Unwind the definition of \sim as we have done for (1) and we see that
$x \sim y \Longleftrightarrow _=5 m$ for some integer m
$y \sim x \Longleftrightarrow \ldots=5 m$ for some integer m

Based on that, is (2) true? If so, enter Y; if not, enter a pair of integers for which this is false.

Finally, we check (3). This means checking to make sure that for all integers x, y, z, if $x \sim y$ and $y \sim z$ then $x \sim z$.

Is this true? If so, enter Y; if not, give a triple of integers for which this fails. \qquad

Finally, based on this calculation, is \sim an equivalence relation on the set of integers? Enter Y or N. \qquad
2. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati ons/Relations2.pg

For the following relations on the set of college students, determine if it satisfies each of the following conditions:

	Reflexive	Symmetric	Transitive	Equivalence Relation
$A \sim B \Leftrightarrow A$ is shorter than B	-	-	-	
$A \sim B \Leftrightarrow A, B$ took 3 class(es) together	-	-	-	-
$A \sim B \Leftrightarrow A, B$ have the same major	-	-	-	-

Please enter Y or N in each of the boxes.
3. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati
ons/Relations3.pg

For the following relations on the set of POSITIVE integers, determine if it satisfies each of the following conditions:

	Reflexive	Symmetric	Transitive	Equivalence Relation
$m \sim n \Leftrightarrow 13$ divides $m-n$	-	-	-	-
$m \sim n \Leftrightarrow 19$ divides $m+n$	-	-	-	-
$m \sim n \Leftrightarrow 11$ divides $m n$	-	-	-	-

Please enter Y or N in each of the boxes.
4. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati
ons/Relations1.pg

	Reflexive	Symmetric	Transitive	Equivalence Relation
$x \sim y \Leftrightarrow x^{2}>y^{2}$	-	-	-	-
$x \sim y \Leftrightarrow x \leq y$	-	-	-	-
$x \sim y \Leftrightarrow x^{2}+y^{2}=9$	-	-	-	-
$x \sim y \Leftrightarrow\|x-y\|<6$	-	-	-	-
$x \sim y \Leftrightarrow x y=0$	-	-	-	-

[^0]For the following relations on the set of points on the plane, determine if it satisfies each of the following conditions (please enter Y or N in each of the boxes):

	Reflexive	Symmetric	Transitive	Equivalence Relation
$\left(u_{1}, u_{2}\right) \sim\left(w_{1}, w_{2}\right) \Leftrightarrow u_{2}=w_{2}$	-	-	-	-
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Leftrightarrow$ either $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$ or the line segment joining the two points have a slope >15		-	-	-
$\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Leftrightarrow$ the distance between the points is >9	-	-	-	-

6. (8 points) Library/MC/Proofs/Relations/Equvalence01.pg

Order 7 of the following sentences so that they form a logical proof of the statement:

Suppose R is a symmetric and transitive relation on A (i.e. $A \times A)$. Further suppose that for each $a \in A$ that there exists $b \in A$ such that $(a, b) \in R$.

Show: R is an equivalence relation.

Quick Hint? What makes R an equivalence relation?

- $(a, a) \in R \Longrightarrow \exists b \in A$ such that $(a, b) \in R$ and $(b, a) \in R$ by transitivity
- $\exists b \in A$ such that $(a, b) \in R$
- Let (a, b) be an arbitrary element of R.
- R is reflexive
- $(a, b) \in R$ and $(b, a) \in R$ implies $(a, a) \in R$ by transitivity
- Assume R is symmetric and transitive and $\forall a \in$ $A,(a, a) \in R$.
- $(b, a) \in R$ by symmetry
- Too much may be the equivalent of none at all.
- Let a be an arbitrary element of A.
- R is an equivalence relation
- Assume that R is symmetric and transitive on A and that each element in A is related to at least one other element in A.

7. (8 points) Library/MC/Proofs/Relations/Equvalence02.pg

Order 10 of the following sentences so that they form a logical proof of the statement:

For $A=Z \times Z$, define a relation R on A by:

$$
((a, b),(c, d)) \in R \Longleftrightarrow a d=b c
$$

Prove that R is an equivalence relation on A.

- Hence, R is symmetric since $((a, b),(a, b)) \in R$.
- Hence R is symmetric. briç $_{〔}$ Next consider $(a, b) R(c, d)$ and $(c, d) R(e, f)$
- Hence R is reflexive.
- Hence, R is transitive. ; bri For any $(a, b), a b=b a$.
- $a f=b e \Longrightarrow(a, b) R(e, f)$
- Define R on $Z \times Z$ such that $((a, b),(c, d)) \in R \Longleftrightarrow$ $a d=b c$
- Thus R is an equivalence relation.
- Then, $a d=b c$ and $c f=d e$ and so $a f=b e$.
- Nathan is a goob.
- Then $a d=b c \Longrightarrow b c=a d$ and so $(c, d) R(a, b)$.
- Hence, R is reflexive and $(a, b) R(c, d)$ means R is symmetric and transitive.
- Consider $((a, b),(c, d)) \in R$.
- $(a, b) R(c, d) \Longrightarrow a b=c d$.
- Therefore $(a, b) R(a, b)$

8. (8 points) Library/MC/Proofs/Relations/Partition 02 .pg Among the options below there are 7 different partitions of the set $A=0,1,2, \ldots, 21$. List them on the right according to the number of equivalence classes that each partition induces.

- $1,2, \ldots, 5,6,8, \ldots, 20$
- $0,21,1,20,2,19,3,18, \ldots, 10,11$
- $Z_{0}, Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5},{ }_{i b r}{ }_{6} Z_{6}, Z_{7}, \ldots, Z_{20}, Z_{21}$
- $0,1,2, \ldots 20,21$
- even positive integers less than 21, ;br $_$odd positive integers less than 21,0,21
- even positive integers less than $21, \mathfrak{b r}$ bodd positive integers less than 21,0,21
- $1,2, \ldots 20,21,22$
- $0,1,2, \ldots, 21$
- $S_{0}=0, S_{1}=3,6,9, S_{2}=1,4,7,10, S_{3}=2,5,8,11, A-S_{0}-$ $S_{1}-S_{2}-S_{3}$
- $0,1,2, \ldots, 8,9,10, \ldots, 21$
- even numbers less than $21, \mathfrak{b r}$ ¿odd numbers less than 21,21

9. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati ons/Relations5.pg

Determine all pairs of integers A, B such that $(m, n) \sim(u, v) \Longleftrightarrow m-A n=u-B v$
is an equivalence relation on the set of all pairs of integers.
$A=$ \qquad
$B=$ \qquad

[^0]: 5. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati
 ons/Relations4.pg
