Matthew Macauley Assignment HW_11_relations due 04/05/2019 at 11:59pm EDT

clemson-math4190

1. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati ons/Relations6.pg Next, we check (2). This means checking to make sure that for all integers x, y, we have $x \sim y \Leftrightarrow y \sim x$. Unwind the defini-In this problem we work out step-by-step the procedure for tion of \sim as we have done for (1) and we see that checking an equivalence relation. Denote by \mathbb{Z} the set of all integers. Declare that two integers $x \sim y \iff ___= 5m$ for some integer m x, y are related if x - y is an integer multiple of 5. In symbols: $y \sim x \iff ___ = 5m$ for some integer m $x \sim y \iff 5$ divides x - y. Based on that, is (2) true? If so, enter Y; if not, enter a pair of integers for which this is false. We want to check if this is an equivalence relation. That means we need to check if \sim is Finally, we check (3). This means checking to make sure (1) Reflexive that for all integers x, y, z, if $x \sim y$ and $y \sim z$ then $x \sim z$. (2) Symmetric (3) Transitive Is this true? If so, enter Y; if not, give a triple of integers for which this fails. ____ We begin with (1). This means checking to make sure that for all integers x, we have $x \sim x$. Recall the definition of \sim for this problem and we see that this is equivalent to saying that for Finally, based on this calculation, is \sim an equivalence relaall integers x, we have that (x - x) is an integer multiple of 5. tion on the set of integers? Enter Y or N. 2. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati Is this true? If so, enter Y; if not, enter an integer for which ons/Relations2.pg

For the following relations on the set of college students, determine if it satisfies each of the following conditions:

	Reflexive	Symmetric	Transitive	Equivalence Relation
$A \sim B \Leftrightarrow A$ is shorter than B				
$A \sim B \Leftrightarrow A, B \text{ took } 3 \text{ class(es) together}$				
$A \sim B \Leftrightarrow A, B$ have the same major				

Please enter *Y* or *N* in each of the boxes.

this is false.

3. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relations/Relations3.pg

For the following relations on the set of POSITIVE integers, determine if it satisfies each of the following conditions:

	Reflexive	Symmetric	Transitive	Equivalence Relation
$m \sim n \Leftrightarrow 13$ divides $m - n$				
$m \sim n \Leftrightarrow 19$ divides $m + n$				
$m \sim n \Leftrightarrow 11$ divides mn				

Please enter *Y* or *N* in each of the boxes.

4. (8 points) L	ibrary/UMass-Amherst/Abstract-Algebra/PS-Relati
ons/Relations1.	pg

For each of the following relations on the set of real numbers, determine if it satisfies each the following conditions (enter *Y* or *N* in each of the boxes):

	Reflexive	Symmetric	Transitive	Equivalence Relation
$x \sim y \Leftrightarrow x^2 > y^2$				
$x \sim y \Leftrightarrow x \le y$				
$x \sim y \Leftrightarrow x^2 + y^2 = 9$				
$x \sim y \Leftrightarrow x - y < 6$				
$x \sim y \Leftrightarrow xy = 0$				

5. (8 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati

For the following relations on the set of points on the plane, determine if it satisfies each of the following conditions (please enter Y or N in each of the boxes):

	Reflexive	Symmetric	Transitive	Equivalence Relation
$(u_1, u_2) \sim (w_1, w_2) \Leftrightarrow u_2 = w_2$				
$(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow$ either $(x_1, y_1) = (x_2, y_2)$ or the				
line segment joining the two points have a slope > 15				
$(x_1, y_1) \sim (x_2, y_2) \Leftrightarrow$ the distance between the points is > 9				

6. (8 points) Library/MC/Proofs/Relations/Equvalence01.pg Order 7 of the following sentences so that they form a logical proof of the statement:

Suppose *R* is a symmetric and transitive relation on *A* (i.e. $A \times A$). Further suppose that for each $a \in A$ that there exists $b \in A$ such that $(a,b) \in R$.

Show: *R* is an equivalence relation.

Quick Hint? What makes R an equivalence relation?

- $(a,a) \in \mathbb{R} \implies \exists b \in A \text{ such that } (a,b) \in \mathbb{R} \text{ and } (b,a) \in \mathbb{R}$ by transitivity
- $\exists b \in A \text{ such that } (a,b) \in R$
- Let (a,b) be an arbitrary element of *R*.
- *R* is reflexive

- $(a,b) \in R$ and $(b,a) \in R$ implies $(a,a) \in R$ by transitivity
- Assume R is symmetric and transitive and $\forall a \in A, (a, a) \in R$.
- $(b,a) \in R$ by symmetry
- Too much may be the equivalent of none at all.
- Let *a* be an arbitrary element of *A*.
- *R* is an equivalence relation
- Assume that *R* is symmetric and transitive on *A* and that each element in *A* is related to at least one other element in *A*.

7. (8 points) Library/MC/Proofs/Relations/Equvalence02.pg

Order 10 of the following sentences so that they form a logical proof of the statement:

For $A = Z \times Z$, define a relation R on A by: $((a,b), (c,d)) \in R \iff ad = bc$ Prove that R is an equivalence relation on A.

Flove that K is an equivalence relation on A.

- Hence, *R* is symmetric since $((a,b),(a,b)) \in R$.
- Hence *R* is symmetric. ibr¿ Next consider (a,b)R(c,d) and (c,d)R(e,f)
- Hence *R* is reflexive.
- Hence, *R* is transitive. For any (a,b), ab = ba.
- $af = be \implies (a,b)R(e,f)$
- Define R on $Z \times Z$ such that $((a,b),(c,d)) \in R \iff ad = bc$
- Thus *R* is an equivalence relation.
- Then, ad = bc and cf = de and so af = be.
- Nathan is a goob.
- Then $ad = bc \implies bc = ad$ and so (c,d)R(a,b).
- Hence, *R* is reflexive and (a,b)R(c,d) means *R* is symmetric and transitive.
- Consider $((a,b), (c,d)) \in R$.
- $(a,b)R(c,d) \implies ab = cd.$
- Therefore (a,b)R(a,b)

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

8. (8 points) Library/MC/Proofs/Relations/Partition02.pg

Among the options below there are 7 different partitions of the set A = 0, 1, 2, ..., 21. List them on the right according to the number of equivalence classes that each partition induces.

- 1,2,...,5,6,8,...,20
- 0,21,1,20,2,19,3,18,...,10,11
- Z₀, Z₁, Z₂, Z₃, Z₄, Z₅, jbr; Z₆, Z₇, ..., Z₂₀, Z₂₁
- 0,1,2,...20,21
- even positive integers less than 21, jbr; odd positive integers less than 21,0,21
- even positive integers less than 21, jbr¿odd positive integers less than 21,0,21
- 1,2,...20,21,22
- 0,1,2,...,21
- $S_0 = 0, S_1 = 3, 6, 9, S_2 = 1, 4, 7, 10, S_3 = 2, 5, 8, 11, A S_0 S_1 S_2 S_3$
- 0,1,2,...,8,9,10,...,21
- even numbers less than 21,;br¿odd numbers less than 21,21

9. (6 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relations/Relations5.pg

Determine all pairs of integers A, B such that $(m, n) \sim (u, v) \iff m - An = u - Bv$

is an equivalence relation on the set of all pairs of integers.

