1. (5 points) Library/UMass-Amherst/Abstract-Algebra/PS-Functi ons/Functions1.pg

Consider the function

$$
\varphi:\{3,4, \ldots, 11,12\} \rightarrow\{3,4, \ldots, 11,12\}
$$

x	3	4	5	6	7	8	9	10	11	12
$\varphi(x)$	10	9	6	4	5	8	12	7	3	11

(a) Is this one-to-one? \qquad (Y/N)
(b) Is this onto? \qquad (Y/N)
(c) Is this bijective? \qquad (Y/N)
2. (5 points) Library/UMass-Amherst/Abstract-Algebra/PS-Functi ons/Functions2.pg
Complete the following table of values of a function

$$
\varphi:\{5,6, \ldots, 13,14\} \rightarrow\{3,4, \ldots, 11,12\}
$$

x	5	6	7	8	9	10	11	12	13	14
$\varphi(x)$	7	-	-	3	6	11	-	-	8	-

so that φ is onto.
3. (5 points) Library/UMass-Amherst/Abstract-Algebra/Ps-Relati ons/Relations7.pg

Let X be the set $\{18,10,13\}$. For the first three parts of this problem you are asked to define a function $f: X \rightarrow X$ so that the relation
satisfies each of the following conditions.
(a) \sim is reflexive

(b) \sim is symmetric

x	18	10	13
$f(x)$	-	-	-

(c) \sim is transitive

x	18	10	13
$f(x)$	-	-	-

(d) [optional: see your instructor] Let Y be an arbitrary nonempty set. Determine all functions $g: Y \rightarrow Y$ so that the relation

$$
a \sim b \Leftrightarrow b=g(a)
$$

is

- Reflexive
- Symmetric
- Transitive

4. (5 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_ 7.pg

Encrypt the message " HALT " by translating the letters into numbers
(via $A=0, B=1, C=2, D=3, E=4, F=5, G=6, H=7, I=$ 8,
$J=9, K=10, L=11, M=12, N=13, O=14, P=15, Q=$ $16, R=17$,
$S=18, T=19, U=20, V=21, W=22, X=23, Y=24, Z=25$)
and then applying the encryption function given, and then translating the numbers back into letters.
(a) $f(p)=(p+3) \bmod 26$ \qquad
(b) $f(p)=(p+15) \bmod 26$
(c) $f(p)=(p+5) \bmod 26$
5. (5 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_ 8.pg

Decrypt the following messages encrypted using the Caesar cipher:
$f(p)=(p+3) \bmod 26$
Alphabet: A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,
(a) FUDCB KDWV
(b) EOXH MHDQV
(c) HFWNESVJ
6. (5 points) Library/ASU-topics/crypto/enc_aff.pg

Encrypt the message " MATH" by translating the letters into numbers
and then applying the encryption function given, and then translating the numbers back into letters.
(a) $f(p)=(17 p+4) \bmod 26$ \qquad
(b) $f(p)=(19 p+7) \bmod 26$ \qquad
(c) $f(p)=(3 p+3) \bmod 26$ \qquad
Use $A=0, B=1, C=2, D=3, E=4, F=5, G=6, H=7, I=8$, $J=9, K=10, L=11, M=12, N=13, O=14, P=15, Q=16, R=$ 17, $S=18, T=19, U=20, V=21, W=22, X=23, Y=24, Z=$ 25
7. (5 points) Library/ASU-topics/crypto/dec_aff.pg

Decrypt the message YPSDPS which was encrypted using the affine cipher:

$$
f(p)=(7 p+15) \bmod 26
$$

Alphabet: $A=0, B=1, \ldots, Z=25$
Message: \qquad
8. (10 points) Library/Rochester/setDiscrete7NumberTheory/ur_d is_7_1.pg
The goal of this exercise is to practice finding the inverse modulo m of some (relatively prime) integer n. We will find the inverse of 7 modulo 45 , i.e., an integer c such that $7 c \equiv 1$ $(\bmod 45)$.

First we perform the Euclidean algorithm on 7 and 45:
$45=6 *$ \qquad + \qquad
[Note your answers on the second row should match the ones on the first row.]

Thus $\operatorname{gcd}(7,45)=1$, i.e., 7 and 45 are relatively prime.
Now we run the Euclidean algorithm backwards to write $1=45 s+7 t$ for suitable integers s, t.
$s=$ \qquad
$t=$ \qquad
when we look at the equation $45 s+7 t \equiv 1(\bmod 45)$, the multiple of 45 becomes zero and so we get
$7 t \equiv 1(\bmod 45)$. Hence the multiplicative inverse of 7 modulo 45 is
9. (5 points) Library/Rochester/setDiscrete7NumberTheory/ur_di s_7_2.pg

Find the smallest positive integer x that solves the congruence:

$$
10 x \equiv 2 \quad(\bmod 63)
$$

$x=$ \qquad
(Hint: From running the Euclidean algorithm forwards and backwards we get $1=s(10)+t(63)$. Find s and use it to solve the congruence.)
10. (5 points) Library/Rochester/setDiscrete6Integers/ur_dis_6 - 3. .pg

The value of the Euler ϕ function (ϕ is the Greek letter phi) at the positive integer n is defined to be the number of positive integers less than or equal to n that are relatively prime to n. For example fon $n=14$, we have $\{1,3,5,9,11,13\}$ are the positive integers less than or equal to 14 which are relatively prime to 14. Thus $\phi(14)=6$. Find:
$\phi(3)$
$\phi(9)$
$\phi(6)$
$\phi(12)$
11. ($\mathbf{5}$ points) Library/Rochester/setDiscrete7NumberTheory/ur_d is_7_7.pg
(Modification of exercise 36 in section 2.5 of Rosen.)
The goal of this exercise is to work thru the RSA system in a
simple case:
We will use primes $p=71, q=53$ and form $n=71 \cdot 53=3763$. [This is typical of the RSA system which chooses two large primes at random generally, and multiplies them to find n. The public will know n but p and q will be kept private.]

Now we choose our public key $e=13$. This will work since $\operatorname{gcd}(13,(p-1)(q-1))=\operatorname{gcd}(13,3640)=1$. [In general as long as we choose an 'e' with $\operatorname{gcd}(\mathrm{e},(\mathrm{p}-1)(\mathrm{q}-1))=1$, the system will work.]

Next we encode letters of the alphabet numerically say via the usual:
($\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \mathrm{D}=3, \mathrm{E}=4, \mathrm{~F}=5, \mathrm{G}=6, \mathrm{H}=7, \mathrm{I}=8$,
$\mathrm{J}=9, \mathrm{~K}=10, \mathrm{~L}=11, \mathrm{M}=12, \mathrm{~N}=13, \mathrm{O}=14, \mathrm{P}=15, \mathrm{Q}=16, \mathrm{R}=17$,
$\mathrm{S}=18, \mathrm{~T}=19, \mathrm{U}=20, \mathrm{~V}=21, \mathrm{~W}=22, \mathrm{X}=23, \mathrm{Y}=24, \mathrm{Z}=25$.)
We will practice the RSA encryption on the single integer 15. (which is the numerical representation for the letter " P "). In the language of the book, $\mathrm{M}=15$ is our original message.

The coded integer is formed via $c=M^{e} \bmod n$.
Thus we need to calculate $15^{13} \bmod 3763$.

This is not as hard as it seems and you might consider using fast modular multiplication.

The canonical representative of $15^{13} \bmod 3763$ is \qquad
12. ($\mathbf{5}$ points) Library/Rochester/setDiscrete7NumberTheory/ur_d is_7_4.pg
Find the SMALLEST positive integer solution to the following system of congruences:

$$
\begin{aligned}
& x \equiv 0 \quad(\bmod 3) \\
& x \equiv 6
\end{aligned} \quad(\bmod 7)
$$

The solution is
13. (5 points) Library/SDSU/Discrete/IntegersAndRationals/pL11 .pg

Find the smallest positive integer x such that:
$x \bmod 2=1$
$x \bmod 3=2$ and
$x \bmod 5=3$

What is the next integer with this property?
[You will have to do some trial and error, but thinking about divisiblity should lead you to some patterns.]

