Matthew Macauley Assignment HW_12_functions_cryptography due 04/19/2019 at 11:59pm EDT

clemson-math4190

1. (5 points) Library/UMass-Amherst/Abstract-Algebra/PS-Functi ons/Functions1.pg Consider the function $\phi: \{3, 4, \dots, 11, 12\} \rightarrow \{3, 4, \dots, 11, 12\}$ 9 10 12 3 4 5 6 7 8 11 х $\varphi(x)$ 10 9 6 4 5 8 12 7 3 11 (a) Is this one-to-one? ____ (Y/N) (b) Is this onto? ____ (Y/N) (c) Is this bijective? ____ (Y/N) 2. (5 points) Library/UMass-Amherst/Abstract-Algebra/PS-Functi ons/Functions2.pg Complete the following table of values of a function $\phi: \{5, 6, ..., 13, 14\} \rightarrow \{3, 4, ..., 11, 12\}$ 5 6 7 8 9 10 11 12 13 14 х $\varphi(x) = 7$ _____ 3 6 11 _____ 8 so that φ is onto. 3. (5 points) Library/UMass-Amherst/Abstract-Algebra/PS-Relati ons/Relations7.pg Let *X* be the set $\{18, 10, 13\}$. For the first three parts of this problem you are asked to define a function $f: X \to X$ so that is the relation

 $u \sim w \Leftrightarrow w = f(u)$

satisfies each of the following conditions.

(a) \sim is reflexive

18 10 13 x f(x)

(b) \sim is symmetric

18 10 13 x f(x)

(c) \sim is transitive

18 10 13 x f(x)

(d) [optional: see your instructor] Let Y be an arbitrary nonempty set. Determine all functions $g: Y \to Y$ so that the relation

$$a \sim b \Leftrightarrow b = g(a)$$

- Reflexive - Symmetric

- Transitive

1

4. (5 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_	8. (10 points) Library/Rochester/setDiscrete7NumberTheory/ur_
^{7.pg} Encrypt the message "HALT" by translating the letters into numbers (via $A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6, H = 7, I = 8,$	is_7_1.pg The goal of this exercise is to practice finding the inverse mod ulo <i>m</i> of some (relatively prime) integer <i>n</i> . We will find the inverse of 7 modulo 45, i.e., an integer <i>c</i> such that $7c \equiv 1$ (mod 45).
J = 9, K = 10, L = 11, M = 12, N = 13, O = 14, P = 15, Q = 16, R = 17, S = 18, T = 19, U = 20, V = 21, W = 22, X = 23, Y = 24, Z = 25	First we perform the Euclidean algorithm on 7 and 45: 45 = 6* + = *2 +1
and then applying the encryption function given, and then trans- lating the numbers back into letters.	[Note your answers on the second row should match the one on the first row.]
(a) $f(p) = (p+3) \mod 26$ (b) $f(p) = (p+15) \mod 26$ (c) $f(p) = (p+5) \mod 26$	Thus gcd(7,45)=1, i.e., 7 and 45 are relatively prime. Now we run the Euclidean algorithm backwards to write
5. (5 points) Library/Rochester/setDiscrete6Integers/ur_dis_6_ 8.pg	$1 = 45s + 7t \text{ for suitable integers } s, t.$ $s = \underline{\qquad}$ $t = \underline{\qquad}$
Decrypt the following messages encrypted using the Caesar cipher:	when we look at the equation $45s + 7t \equiv 1 \pmod{45}$, the multiple of 45 becomes zero and so we get $7t \equiv 1 \pmod{45}$. Hence the multiplicative inverse of 7 module
$f(p) = (p+3) \mod 26$ Alphabet: A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y (a) FUDCB KDWV (b) EOXH MHDQV (c) HFWNESVJ	45 is Z 9. (5 points) Library/Rochester/setDiscrete7NumberTheory/ur_d s_7_2.pg
6. (5 points) Library/ASU-topics/crypto/enc_aff.pg Encrypt the message "MATH" by translating the letters into	Find the smallest positive integer <i>x</i> that solves the congruence:
numbers and then applying the encryption function given, and then trans- lating the numbers back into letters.	$10x \equiv 2 \pmod{63}$ $x = \underline{\qquad}$
(a) $f(p) = (17p+4) \mod 26$ (b) $f(p) = (19p+7) \mod 26$ (c) $f(p) = (3p+3) \mod 26$	(Hint: From running the Euclidean algorithm forwards and backwards we get $1 = s(10) + t(63)$. Find s and use it to solv the congruence.)
Use $A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, G = 6, H = 7, I = 8,$ J = 9, K = 10, L = 11, M = 12, N = 13, O = 14, P = 15, Q = 16, R = 17, S = 18, T = 19, U = 20, V = 21, W = 22, X = 23, Y = 24, Z = 25	10. (5 points) Library/Rochester/setDiscrete6Integers/ur_dis_ _3.pg The value of the Euler ϕ function (ϕ is the Greek letter phi) at the positive integer n is defined to be the number of positive in tegers less than or equal to n that are relatively prime to n. Fo
7. (5 points) Library/ASU-topics/crypto/dec_aff.pg	example fon n=14, we have $\{1,3,5,9,11,13\}$ are the positive
Decrypt the message <i>YPSDPS</i> which was encrypted using the affine cipher:	integers less than or equal to 14 which are relatively prime to 14. Thus $\phi(14) = 6$. Find: $\phi(3) = \frac{1}{2}$ $\phi(9) = \frac{1}{2}$
$f(p) = (7p+15) \mod 26$	φ(6) φ(12)
Alphabet: $A = 0, B = 1,, Z = 25$	11. (5 points) Library/Rochester/setDiscrete7NumberTheory/ur_
Message:	 is_7_7.pg (Modification of exercise 36 in section 2.5 of Rosen.) The goal of this exercise is to work thru the RSA system in a

simple case:

We will use primes p = 71, q = 53 and form $n = 71 \cdot 53 = 3763$. [This is typical of the RSA system which chooses two large primes at random generally, and multiplies them to find n. The public will know n but p and q will be kept private.]

Now we choose our public key e = 13. This will work since gcd(13, (p-1)(q-1)) = gcd(13, 3640) = 1. [In general as long as we choose an 'e' with gcd(e,(p-1)(q-1))=1, the system will work.]

Next we encode letters of the alphabet numerically say via the usual:

(A=0,B=1,C=2,D=3,E=4,F=5,G=6,H=7,I=8, J=9,K=10,L=11,M=12,N=13,O=14,P=15,Q=16,R=17, S=18,T=19,U=20,V=21,W=22,X=23,Y=24,Z=25.)

We will practice the RSA encryption on the single integer 15. (which is the numerical representation for the letter "P"). In the language of the book, M=15 is our original message.

The coded integer is formed via $c = M^e \mod n$.

Thus we need to calculate $15^{13} \mod 3763$.

This is not as hard as it seems and you might consider using fast modular multiplication.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

The canonical representative of 15¹³ mod 3763 is _____

12. (5 points) Library/Rochester/setDiscrete7NumberTheory/ur_d

is_7_4.pg Find the SMALLEST positive integer solution to the following system of congruences:

$$x \equiv 0 \pmod{3}$$
$$x \equiv 6 \pmod{7}$$

The solution is _____

13. (5 points) Library/SDSU/Discrete/IntegersAndRationals/pL11 .pg

Find the smallest positive integer x such that: $x \mod 2 = 1$ $x \mod 3 = 2$ and $x \mod 5 = 3$

What is the next integer with this property?

[You will have to do some trial and error, but thinking about divisibility should lead you to some patterns.]