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Russell’s paradox

Recall Russell’s paradox:

Suppose a town’s barber shaves every man who doesn’t shave himself.

Who shaves the barber?

This was due to British philsopher, logician, and mathematician Bertrand Russell
(1872–1970), as an informal way to describe the paradox behind the set of all sets that don’t
contain themselves:

S = {A | A is a set, and A 6∈ A}.

If such a set exists, then

S ∈ S −→ S 6∈ S , S 6∈ S → S ∈ S ,

which is a contradiction.
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A “fix” for Russell’s paradox

Let U be a universal set, and let

S = {A | A ⊆ U and A 6∈ A}.

Now, suppose that S ∈ S . Then by defintion, S ⊆ U and S 6∈ S.

If S 6∈ S , then

¬
(
S ⊆ U ∧ S 6∈ S

)
=⇒

(
S 6⊆ U ∨ S ∈ S

)
=⇒ S 6⊆ U.

In other words, there cannot exist a “set of all sets”, but we can define a “class of all sets”.

One may ask whether we can always get rid of contradictions in this manner. In 1931, Kurt
Gödel said “no.”

Gödel’s incompleteness theorem (informally)

Every axiomatic system that is sufficient to develop the basic laws of
arithmetic cannot be both consistent and complete.

In other words, there will always be either paradoxes, or statements that
are unprovable.
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The halting problem

Alan Turing (1912–54) was one of the pioneers of the field of computer
science.

During World War II, he decripted German intelligence codes for the
British government, which played a major role in the Allies defeating the
Nazis.

One of Turing’s many contributions to computer science is the
formalization of the algorithm.

Theorem( Turing, 1930s)

There cannot exist a computer algorithm that accepts any algorithm X , and data set D, and
outputs:

“Halts”, if X halts with input D,

“Loops Forever”, if X loops forever with input D.

Turing proved this by contradiction. He supposed there existed such an algorithm, and
showed that it lead to an instance of Russell’s paradox.
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The halting problem

Theorem (Turing, 1930s)

There cannot exist a computer algorithm that accepts any algorithm X , and data set D, and
outputs:

“Halts”, if X halts with input D,

“Loops Forever”, if X loops forever with input D.

Proof

Suppose there exists such an algorithm:

CheckHalt(X, D) {
if (X terminates in finitely many steps given D)

print HALTS;

else

print LOOPS FOREVER;

end if

}

Note that we could run CheckHalt(X, X).

M. Macauley (Clemson) Lecture 2.9: Russell’s paradox & the halting problem Discrete Mathematical Structures 5 / 8

mailto:macaule@clemson.edu


The halting problem

Theorem (Turing, 1930s)

There cannot exist a computer algorithm that accepts any algorithm X , and data set D, and
outputs:

“Halts”, if X halts with input D,

“Loops Forever”, if X loops forever with input D.

Proof (contin.)

Define the following algorithm:

Russell(X) {
if (CheckHalt(X,X) prints “HALTS”)

while 1; \\ loops forever

else if (CheckHalt(X,X) prints “HALTS”)

halt;

end if

}

Now, consider Russell(Russell).

M. Macauley (Clemson) Lecture 2.9: Russell’s paradox & the halting problem Discrete Mathematical Structures 6 / 8

mailto:macaule@clemson.edu


The halting problem

Theorem (Turing, 1930s)

There cannot exist a computer algorithm that accepts any algorithm X , and data set D, and
outputs:

“Halts”, if X halts with input D,

“Loops Forever”, if X loops forever with input D.

Proof (contin.)

What happens when we run Russell(Russell)?

Case 1. Russell(Russell) terminates after finitely many steps.

Then CheckHalt(Russell, Russell) prints “HALTS”.

This means that Russell(Russell) loops forever.

Case 2. Russell(Russell) loops forever.

Then CheckHalt(Russell, Russell) prints “LOOPS FOREVER”.

This means that Russell(Russell) halts.

This is a contradiction, and it means that the CheckHalt algorithm cannot exist. �
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Undecidable problems

The halting problem is said to be undecidable.

It requires a yes/no answer, but there cannot exist any algorithm to answer it.

There are many other problems that have been shown to be undecidable.

Abstract algebra: Determine whether two groups are isomorphic.

Topology: Determine whether two 4-dimensional topological spaces are homeomorphic.

Number theory: Determine whether a Diophantine equation has a solution over Z.

Linear algebra: Given a finite set of n × n matrices over Z, can they be multiplied to
yield the zero matrix?

Computational linguistics: Determine whether two context-free grammars generate the
same set of strings.

Computer science: Determine the Kolmogorov complexity of a string.

Additionally, many classic unsolved problems may very well be unprovable, such as P vs. NP,
the Riemann hypothesis, the 3n + 1 problem, and the Goldbach conjecture.

M. Macauley (Clemson) Lecture 2.9: Russell’s paradox & the halting problem Discrete Mathematical Structures 8 / 8

mailto:macaule@clemson.edu

