Lecture 3.4: Divisibility and primes

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Divisibility

Definition

Let $n, d \in \mathbb{Z}$, with $d \neq 0$. We say d divides n, written $d \mid n$, if n = dk for some $k \in \mathbb{Z}$, i.e.,

 $d \mid n \iff \exists k \in \mathbb{Z} \text{ such that } n = dk.$

Other ways to say this are:

- **n** is divisible by d,
- \blacksquare *n* is a multiple of *d*,
- $\blacksquare d \text{ is a divisor of } n,$
- $\bullet d \text{ is a factor of } n.$

Key point

If d does not divide n, we write $d \nmid n$. Note that

$$d \nmid n \iff \frac{n}{d}$$
 is not an integer.

Examples

- (i) Every positive integer divides 0.
- (ii) Every positive integer is divisible by 1 and itself.
- (iii) The only divisors of 1 are 1 and -1.

Divisibility and primes

Recall that an integer p > 0 is prime if p = ab implies either p = a or p = b.

Proposition

An integer p > 0 is prime iff its only positive divisors are 1 and p.

Proof

Divisibility and primes

Proposition

Every positive integer is divisible by a prime.

Proof

Transitivity of divisibility

Statements

Let a, b, c be integers. (i) If $a \mid b$ and $b \mid c$, then $a \mid c$. (ii) If $a \mid b$ and $b \mid a$, then a = b.

Proof (i)

(ii) This is false. Let a = 2, b = -2.

The fundamental theorem of arithmetic

Theorem

Given any integer n > 1, there exists $k \in \mathbb{N}$, distinct prime numbers $p_1 < \cdots < p_k$, and positive integers e_1, \ldots, e_k such that

$$n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}.$$

Moreover, the the sequence of p_i 's and e_i 's is unique.

Remark

Though unique factorization seems "obvious", there are other sets of numbers for which it fails. For example:

- (i) The rational numbers do not have primes, or unique factorization.
- (ii) In the set of numbers $R_{-5} := \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$,

$$9 = 3 \cdot 3 = (2 + \sqrt{-5})(2 - \sqrt{-5}).$$