Lecture 3.4: Divisibility and primes

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Divisibility

Definition

Let $n, d \in \mathbb{Z}$, with $d \neq 0$. We say d divides n, written $d \mid n$, if $n=d k$ for some $k \in \mathbb{Z}$, i.e.,

$$
d \mid n \quad \Leftrightarrow \quad \exists k \in \mathbb{Z} \text { such that } n=d k .
$$

Other ways to say this are:

- n is divisible by d,
- n is a multiple of d,
- d is a divisor of n,
- d is a factor of n.

Key point

If d does not divide n, we write $d \nmid n$. Note that

$$
d \nmid n \Leftrightarrow \frac{n}{d} \text { is not an integer. }
$$

Examples

(i) Every positive integer divides 0 .
(ii) Every positive integer is divisible by 1 and itself.
(iii) The only divisors of 1 are 1 and -1 .

Divisibility and primes

Recall that an integer $p>0$ is prime if $p=a b$ implies either $p=a$ or $p=b$.

Proposition

An integer $p>0$ is prime iff its only positive divisors are 1 and p.

Proof

Divisibility and primes

Proposition

Every positive integer is divisible by a prime.

Proof

Transitivity of divisibility

Statements

Let a, b, c be integers.
(i) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(ii) If $a \mid b$ and $b \mid a$, then $a=b$.

Proof

(i)
(ii) This is false. Let $a=2, b=-2$.

The fundamental theorem of arithmetic

Theorem

Given any integer $n>1$, there exists $k \in \mathbb{N}$, distinct prime numbers $p_{1}<\cdots<p_{k}$, and positive integers e_{1}, \ldots, e_{k} such that

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

Moreover, the the sequence of p_{i} 's and e_{i} 's is unique.

Remark

Though unique factorization seems "obvious", there are other sets of numbers for which it fails. For example:
(i) The rational numbers do not have primes, or unique factorization.
(ii) In the set of numbers $R_{-5}:=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$,

$$
9=3 \cdot 3=(2+\sqrt{-5})(2-\sqrt{-5}) .
$$

