Lecture 3.5: Rational and irrational numbers

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Overview

Definition

A real number r is rational if $r=\frac{a}{b}$ for integers $a, b \in \mathbb{Z}$. Otherwise, it is irrational.

Examples (not all with proof)

1. Every integer is rational, because $n=\frac{n}{1}$.
2. The sum of two rational numbers is rational.
3. Every decimal that terminates is rational. For example, $1.234=1+\frac{234}{1000}=\frac{1234}{1000}$.
4. Every repeating decimal is rational. For example, if $x=0.121212 \ldots$, then

$$
99 x=100 x-x=12.12121212 \ldots-0.12121212 \ldots=12
$$

so $99 x=12$, i.e., $x=\frac{12}{99}$.
5. The numbers $\sqrt{2}, \pi$, and e are irrational.

Exercise

Show that every repeating decimal is rational.

Basic properties

Proposition

(i) If r and s are rational, then $r+s$ and $r s$ are rational.
(ii) If r is rational and s is irrational, then $r+s$ and $r s$ are irrational.
(iii) If r and s are irrational, then $r+s$ is ...???

Proof

Proofs of irrationality

Theorem (5 $5^{\text {th }}$ century B.C.)
$\sqrt{2}$ is irrational.

Proof

Suppose for sake of contradction that $\sqrt{2}=\frac{m}{n}$, for some integers m, n, with no common prime factors. This means that

$$
2=\frac{m^{2}}{n^{2}}
$$

or equivalently, $2 n^{2}=m^{2}$.
How can we find a contradiction from this. . . ?

Proofs of irrationality

Exercises

(i) Prove that $\sqrt{3}$ is irrational.
(ii) Prove that $\sqrt{2}+\sqrt{3}$ is irrational.
(iii) Prove that $\sqrt[3]{2}$ is irrational.

