Lecture 3.6: Quotient, remainder, ceiling and floor

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Division and remainder

Theorem

Given any $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^{+}$, there exists unique integers q, r such that

$$
n=d q+r, \quad 0 \leq r<d
$$

We call $q:=n \operatorname{div} d$ and $r:=n \bmod d$ the quotient and remainder, respectively.

Examples

1. Compute 365 div 7 and $356 \bmod 7$.
2. Suppose $m \bmod 11=6$. Compute $4 n \bmod 11$.
3. Given $n \in \mathbb{Z}$, compute $n^{2} \bmod 4$.

Division and remainder

If $n \in \mathbb{Z}$ is odd, then $n^{2} \bmod 8=1$. Equivalently,

$$
\forall \text { odd } n, \exists m \in \mathbb{Z} \text { such that } n^{2}=8 m+1 .
$$

Ceiling and floor

Definition

Given $x \in \mathbb{R}$, the floor of x is defined as

$$
\lfloor x\rfloor=n \quad \Leftrightarrow \quad n \leq x<n+1 .
$$

The ceiling of x is defined as

$$
\lceil x\rceil=n \quad \Leftrightarrow \quad n-1<x \leq n .
$$

Questions

Are the following true or false?

1. $\lfloor x-1\rfloor=\lfloor x\rfloor-1$
2. $\lfloor x-y\rfloor=\lfloor x\rfloor-\lfloor y\rfloor$.

Ceiling and floor

Proposition

For all $x \in \mathbb{R}$ and $m \in \mathbb{Z},\lfloor x+m\rfloor=\lfloor x\rfloor+m$.

Proof

By definition, $n \leq x<n+1$, where $\lfloor x\rfloor=n$.
Adding m yields

$$
\underbrace{n+m}_{=\lfloor x+m\rfloor} \leq x+m<n+m+1 .
$$

But $\lfloor x\rfloor=n$ implies that $n+m=\lfloor x\rfloor+m$.

Ceiling and floor

Proposition

For all integers n,

$$
\left\lfloor\frac{n}{2}\right\rfloor=\left\{\begin{array}{cc}
\frac{n}{2} & n \text { is even } \\
\frac{n-1}{2} & n \text { is odd }
\end{array}\right.
$$

Ceiling and floor

Proposition

For all integers n and d,

$$
n \operatorname{div} d=\left\lfloor\frac{n}{d}\right\rfloor, \quad \text { and } \quad n \bmod d=n-d\left\lfloor\frac{n}{d}\right\rfloor .
$$

