Lecture 3.7: The Euclidean algorithm

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Greatest common divisor

Definition

Let $a, b \in \mathbb{Z}$ be nonzero. The greatest common divisor of a and b, denote $\operatorname{gcd}(a, b)$, is the positive integer d satisfying:

1. d is a common divisor of a and b, i.e.,

$$
d \mid a \text { and } d \mid b .
$$

2. If c also divides a and b, then $c \leq d$. In other words,

$$
\forall c \in \mathbb{N}, \quad \text { if } c \mid a \text { and } c \mid b, \text { then } c \leq d
$$

Examples

Compute the following:

1. $\operatorname{gcd}(72,63)=$
2. $\operatorname{gcd}\left(10^{12}, 6^{18}\right)=$
3. $\operatorname{gcd}(5,0)=$
4. $\operatorname{gcd}(0,0)=$

Greatest common divisor

Lemma

If $a, b \in \mathbb{Z}$ are not both zero, and $q, r \in \mathbb{Z}$ satisfy $a=b q+r$, then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)
$$

Proof

We'll show:

1. $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(b, r)$.
2. $\operatorname{gcd}(b, r) \leq \operatorname{gcd}(a, b)$.

The Euclidean algorithm

Around 300 B.C., Euclid wrote his famous book, the Elements, in which he described what is now known as the Euclidean algorithm:

Proposition VII. 2 (Euclid's Elements)

Given two numbers not prime to one another, to find their greatest common measure.

The algorithm works due to two key observations:

- If $a \mid b$, then $\operatorname{gcd}(a, b)=a$;
- If $a=b q+r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

This is best seen by an example: Let $a=654$ and $b=360$.

$$
\begin{array}{ll}
654=360 \cdot 1+294 & \operatorname{gcd}(654,360)=\operatorname{gcd}(360,294) \\
360=294 \cdot 1+66 & \operatorname{gcd}(360,294)=\operatorname{gcd}(294,66) \\
294=66 \cdot 4+30 & \operatorname{gcd}(294,66)=\operatorname{gcd}(66,30) \\
66=30 \cdot 2+6 & \operatorname{gcd}(66,30)=\operatorname{gcd}(30,6) \\
30=6 \cdot 5 & \operatorname{gcd}(30,6)=6 .
\end{array}
$$

We conclude that $\operatorname{gcd}(654,360)=6$.

The Euclidean algorithm (modernized)

Input: Integers $A, B \in \mathbb{Z}$ with $A>B \geq 0$.
Initalize. $a:=A, b:=B, r:=B$.
while $(b \neq 0)$
$r:=a \bmod b$
$a:=b$
$b:=r$
end while
gcd := a
return gcd;

The extended Euclidean algorithm

It can be useful to keep track of extra information when doing the Euclidean algorithm.
The following is an example of the extended Euclidean algorithm, for $a=654$ and $b=360$.

		654	360
	$654=1 \cdot 654+0 \cdot 360$	1	0
$654=360 \cdot 1+294$	$360=0 \cdot 654+1 \cdot 360$	0	1
$360=294 \cdot 1+66$	$66=1 \cdot 360-1 \cdot 294$	-1	2
$294=66 \cdot 4+30$	$30=1 \cdot 294-4 \cdot 66$	5	-9
$66=30 \cdot 2+6$	$6=1 \cdot 66-2 \cdot 30$	-11	20
$30=6 \cdot 5$			

We conclude that:

$$
\operatorname{gcd}(654,360)=6=654(-11)+360(20)
$$

Note that this allows us to solve equations of the form

$$
654 x \equiv 6 \bmod 360, \quad \Longrightarrow \quad x=-11 \equiv 349 \quad(\bmod 360)
$$

and

$$
360 x \equiv 6 \bmod 654, \quad \Longrightarrow \quad x=20(\bmod 654)
$$

