Lecture 5.3: Why RSA works

Matthew Macauley
Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 4190, Discrete Mathematical Structures

Generating large prime numbers

To implement RSA, we need to be able to generate large prime numbers.
In practice, this is basically done by "guess and check." To see both why and how this works, we'll need a little bit of number theory.

Prime number theorem

The probability that a random number n is prime is approximately $1 /(\ln n)$, i.e.,

$$
\lim _{n \rightarrow \infty}(\text { proportion of numbers } \leq n \text { that are prime })=\frac{1}{\ln n} .
$$

The chances of a random 9-digit number being prime is approx. 4% (i.e., 1 in 25). For a 200 -digit number, this is approx. 0.2% (i.e., 1 in 500).

Heuristic for finding a large prime

while (true) \{
let n be a random 200-digit number;
if (n is prime)

How to check this??
return n;
\}

Checking whether a large number is prime

The Fermat primality test is a probabilistic method to determine whether a number is ("probably") prime. It relies on the following result.

Fermat's little theorem

For any prime p and integer a,

$$
a^{p} \equiv a \quad(\bmod p)
$$

Without loss of generality, assume that $a \in\{0,1, \ldots, p-1\}$. If $a=0$, this trivially holds.
Otherwise, $\operatorname{gcd}(a, p)=1$. This means that a has a multiplicative inverse, modulo p.
Multiplying both sides by this inverse a^{-1} yields

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

We now have the following heuristic for testing for primes:

Fermat primality test

Given a number $n \in \mathbb{N}$, compute $a^{n-1}(\bmod n)$ for many random values of $a<n$.

- If $a^{n} \not \equiv 1(\bmod n)$ for some a, then n must be composite.
- If $a^{n} \equiv 1(\bmod n)$ for every a that we try, then n is "probably prime."

Proof of Fermat's little theorem

Fermat's little theorem (restated)

For any prime p and integer a with $\operatorname{gcd}(a, p)=1$,

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

Proof

Assume without loss of generality that $a \in\{1,2, \ldots, p-1\}$.
Consider the list of numbers

$$
a, 2 a, 3 a, \ldots,(p-1) a .
$$

Claim: No two of these are equivalent modulo p.
To see why, suppose that $k a \equiv \ell a(\bmod p)$.
Multiplying by $a^{-1}(\bmod p)$ yields $k \equiv \ell(\bmod p)$.
Thus,

$$
a \cdot 2 a \cdot 3 a \cdots(p-1) a \equiv 1 \cdot 2 \cdot 3 \cdots(p-1) \quad(\bmod p) .
$$

Rearranging terms, we get

$$
a^{p-1}(p-1)!\equiv(p-1)!\quad(\bmod p) \quad \Longrightarrow \quad a^{p-1} \equiv 1 \quad(\bmod p)
$$

Fermat primality test

Fermat primality test (revisited)

Given a number $n \in \mathbb{N}$, compute $a^{n-1}(\bmod n)$ for many random values of $a<n$.

- If $a^{n-1} \not \equiv 1(\bmod n)$, then n must be composite. We say a is a Fermat witness.
- If $a^{n-1} \equiv 1(\bmod n)$, there are two cases:

1. n is prime.
2. n is composite; a is called a Fermat liar.

Lemma

If a composite number n has a Fermat witness, then at least half of all numbers $a \in\{1,2, \ldots, n-1\}$ that are relatively prime to n are Fermat witnesses.

Proof (sketch)

Consider a Fermat witness a and Fermat liar b for n. Then

$$
(a b)^{n-1}=\underbrace{a^{n-1}}_{\not \equiv 1} \cdot \underbrace{b^{n-1}}_{\equiv 1} \equiv a^{n-1} \not \equiv 1 \quad(\bmod n)
$$

In other words, every Fermat liar b has a corresponding Fermat witness $a b$.

Carmichael numbers

We just saw how if n has a Fermat witness, then it has many Fermat witnesses.
But. . . is it possible that n is composite, but has no Fermat witnesses?
Unfortunately, the answer is YES, but this is very rare.

Definition

A Carmichael number is a composite number n for which

$$
a^{n-1} \equiv 1 \quad(\bmod n)
$$

holds for all $a=1, \ldots, n-1$ relatively prime to n.

The first few Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601, 8911, ...
For 100 -digit numbers, less than 1 in 10^{30} are Carmichael numbers. For 200-digit numbers, the chances are even less.

Take-away message

If we randomly choose a 200-digit number n, and test ≈ 100 different values of a without getting a Fermat witness, then we can be almost certain that n is prime.

Fermat primality test

Algorithm

Input: Integer $n>0$.
is_composite $=$ FALSE;
for $(i=1, \ldots, 100)$ \{
pick a random number a_{i} relatively prime to n;
if $\left(a_{i}^{n-1} \not \equiv 1(\bmod n)\right)$

a_i is a Fermat witness
is_composite = TRUE;
end;
\}
if (is_composite $==$ FALSE)
print "chances that n is composite is less than 1 in $2^{100} \approx 10^{30}$ ";
else if (is_composite $==$ TRUE)
print " n is composite";

Now that we know how go actually generate and compute with large primes, we can turn our attention to why the RSA encryption and decryption functions actually work.

Why RSA encryption and decryption work

Theorem

Let $n=p q$ and $e d \equiv 1(\bmod (p-1)(q-1))$.
Given a message $m<n$ with $\operatorname{gcd}(m, n)=1$, set $c=m^{e}(\bmod n)$. Then $c^{d} \equiv m(\bmod n)$.

Proof

Lemma. $m^{(p-1)(q-1)} \equiv 1(\bmod n)$.
Proof. Since $\operatorname{gcd}\left(m^{q-1}, p\right)=1$, Fermat's little theorem says

$$
\left(m^{q-1}\right)^{p-1} \equiv 1 \quad(\bmod p) .
$$

Similarly,

$$
\left(m^{p-1}\right)^{q-1} \equiv 1 \quad(\bmod q) .
$$

Thus, for some $k, \ell \in \mathbb{Z}$,

$$
m^{(p-1)(q-1)}=1+k p=1+\ell p .
$$

This means that $m^{(p-1)(q-1)}-1$ is a multiple of both p and q, and so

$$
m^{(p-1)(q-1)}-1=b p q, \quad \text { for some } b \in \mathbb{Z},
$$

completing the proof of the Lemma.

Why RSA encryption and decryption work

Theorem

Let $n=p q$ and $e d \equiv 1(\bmod (p-1)(q-1))$.
Given a message $m<n$ with $\operatorname{gcd}(m, n)=1$, set $c=m^{e}(\bmod n)$. Then $c^{d} \equiv m(\bmod n)$.

Proof

Lemma (established). $m^{(p-1)(q-1)} \equiv 1(\bmod n)$.
We know $c^{d} \equiv m^{\text {ed }}(\bmod n)$, and need to show $c^{d} \equiv m(\bmod n)$. Thus, it suffices to show

$$
m^{e d} \equiv m \quad(\bmod n)
$$

Note that $e d \equiv(\bmod (p-1)(q-1)) \Leftrightarrow \exists j \in \mathbb{Z}$ such that $e d=1+j(p-1)(q-1)$.
Now,

$$
m^{e d}=m^{1+j(p-1)(q-1)}=m \cdot m^{j(p-1)(q-1)}=m \cdot \underbrace{\left(m^{(p-1)(q-1)}\right)^{j}}_{\equiv 1, \text { by Lemma }} \equiv m \quad(\bmod n)
$$

