Read: Lax, Chapter 5, pages 55-56, and Appendix 4, pages 313-316.

1. Prove the following properties of the trace function:
(a) $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for all $m \times n$ matrices A and $n \times m$ matrices B.
(b) If A is square, write down a formula for $\operatorname{tr}\left(A A^{T}\right)$ in terms of $a_{i j}$.
2. Let U, V, and X be vector spaces over a field K. Define a map

$$
\tau: U \times V \longrightarrow U \otimes V, \quad \tau(u, v)=u \otimes v
$$

(a) Prove that τ is bilinear.
(b) Prove that for any linear map $L: U \otimes V \rightarrow X$, the mapping $\beta:=L \circ \tau$ is bilinear.
(c) Prove the universal property of tensor products: for any bilinear map $\beta: U \times V \rightarrow X$, there is a unique linear mapping $L: U \otimes V \rightarrow X$ such that $\beta=L \circ \tau$:

3. If $\left\{u_{1}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are bases for U and V, then the pure tensors $\left\{u_{i} \otimes v_{j} \mid\right.$ $1 \leq i \leq n, 1 \leq j \leq m\}$ clearly span $U \otimes V$. Show that these are linearly independent, and conclude that $\operatorname{dim}(U \otimes V)=(\operatorname{dim} U)(\operatorname{dim} V)$. [Hint: Apply the universal property to the canonical basis $\left\{f_{i j}\right\}$ of bilinear functions $U \times V \rightarrow K$.]
4. Use the universal property of the tensor product to prove the following results:
(a) $U \otimes V \cong V \otimes U$ (hint: let $X=V \otimes U$);
(b) $(U \otimes V) \otimes W \cong U \otimes(V \otimes W)$;
(c) $(U \times V) \otimes W \cong(U \otimes W) \times(V \otimes W)$.
5. Let W be a vector space with basis $\left\{w_{i j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Define the linear map

$$
\alpha: W \longrightarrow U \otimes V, \quad \alpha: w_{i j} \longmapsto u_{i} \otimes v_{j} .
$$

To show this is an isomorphism, we would like to define the (inverse) map $\beta: U \otimes V \rightarrow W$. But to do so, we would need a basis for $U \otimes V$. So instead, define a map

$$
\tilde{\beta}: F_{U \times V} \longrightarrow W, \quad \tilde{\beta}: e_{\Sigma a_{i} u_{i}, \Sigma b_{j} v_{j}} \longmapsto \sum_{i, j} a_{i} b_{j} w_{i j} .
$$

where $F_{U \times V}$ is the free vector space with basis $U \times V$:

$$
F_{U \times V}=\left\{\sum c_{u v} e_{u, v} \quad \mid \quad u \in U, v \in V\right\} .
$$

(a) Show that $N_{q} \subseteq N_{\tilde{\beta}}$, where $q: F_{U \times V} \rightarrow U \otimes V$ is the canonical quotient, and apply the universal property of quotient maps (see HW 3) to get a map $\beta: U \otimes V \rightarrow W$.
(b) Show that α and β are inverses by verifying that $\alpha \circ \beta=\operatorname{Id}_{U \otimes V}$ and $\beta \circ \alpha=\operatorname{Id}_{W}$.

