Read: Lax, Chapter 6, pages 58-76.

1. Let $A: X \rightarrow X$ be a linear map with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and corresponding eigenvectors v_{1}, \ldots, v_{n}. Let $\ell_{1}, \ldots, \ell_{n}$ be the dual basis.
(a) Prove that $\ell_{1}, \ldots, \ell_{n}$ are eigenvectors of the transpose map $A^{\prime}: X^{\prime} \rightarrow X^{\prime}$.
(b) Now, suppose that f_{1}, \ldots, f_{n} is any basis of eigenvectors of A^{\prime}. Prove that $\left(f_{i}, v_{j}\right)=0$ if $i \neq j$ and $\left(f_{i}, v_{i}\right) \neq 0$.
(c) For any $x=a_{1} v_{1}+\cdots+a_{n} v_{n}$, derive a formula for a_{i} in terms of x, v_{i}, and f_{i}.
2. Let A be an invertible $n \times n$ matrix. Prove that A^{-1} can be written as a polynomial in degree at most $n-1$. That is, prove that there are scalars c_{i} such that

$$
A^{-1}=c_{n-1} A^{n-1}+c_{n-2} A^{n-2}+\cdots+c_{1} A+c_{0} I .
$$

3. Let λ be an eigenvalue of A, and let N_{i} be the nullspace of $(A-\lambda I)^{i}$. Elements of N_{i} are called generalized eigenvectors of λ. The special case of $i=1$ are the ordinary ("genuine") eigenvectors. Prove that $A-\lambda I$ extends to a well-defined map $N_{i+1} / N_{i} \longrightarrow N_{i} / N_{i-1}$, and that this mapping is $1-1$.
4. Let A be an $n \times n$ matrix over \mathbb{C} with an eigenvalue λ and corrresponding eigenvector v_{1}. Let v_{2} be a generalized eigenvector satisfying $(A-\lambda I) v_{2}=v_{1}$.
(a) Show that $A^{N} v_{2}=\lambda^{N} v_{2}+N \lambda^{N-1} v_{1}$, for any $N \in \mathbb{N}$.
(b) Show that $q(A) v_{2}=q(\lambda) v_{2}+q^{\prime}(\lambda) v_{1}$, for any polynomial $q(t) \in \mathbb{C}[t]$.
(c) Give a formula (no proof needed) for $q(A) v_{m}$, where v_{1}, \ldots, v_{m} are generalized eigenvectors of A with $(A-\lambda I) v_{k}=v_{k-1}$. Let $v_{0}=0$, for convenience.
5. Do the following for the matrix A below, and then repeat it for B :

$$
A=\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
2 & 1 & 2 & 1 \\
0 & 0 & -1 & 0 \\
4 & 0 & -6 & 1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
2 & 1 & 0 & -4 \\
1 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right], \quad J_{\lambda}=\left[\begin{array}{cccc}
\lambda & 1 & & \\
& \lambda & \ddots & \\
& & \ddots & 1 \\
& & & \lambda
\end{array}\right]
$$

(a) Find the characteristic and minimal polynomials, and all (genuine) eigenvectors.
(b) For each eigenvalue λ, compute $\operatorname{dim} N_{(A-\lambda I)^{j}}$ for $j=1,2,3, \ldots$
(c) Find a basis \mathcal{B} of \mathbb{C}^{4} consisting of generalized eigenvectors, so that the matrix with respect to this basis is $J=P^{-1} A P$, where J is a Jordan matrix. This means that J is block-diagonal formed from Jordan blocks J_{λ}; see above.
(d) A subspace $Y \subseteq \mathbb{C}^{4}$ is A-invariant if $A(Y) \subseteq Y$. Of the 16 subspaces spanned by subsets of \mathcal{B}, determine which ones are A-invariant.

