Read: Lax, Chapter 6, pages 58–76.

- 1. Let $A: X \to X$ be a linear map with distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding eigenvectors v_1, \ldots, v_n . Let ℓ_1, \ldots, ℓ_n be the dual basis.
 - (a) Prove that ℓ_1, \ldots, ℓ_n are eigenvectors of the transpose map $A': X' \to X'$.
 - (b) Now, suppose that f_1, \ldots, f_n is any basis of eigenvectors of A'. Prove that $(f_i, v_j) = 0$ if $i \neq j$ and $(f_i, v_i) \neq 0$.
 - (c) For any $x = a_1v_1 + \cdots + a_nv_n$, derive a formula for a_i in terms of x, v_i , and f_i .
- 2. Let A be an invertible $n \times n$ matrix. Prove that A^{-1} can be written as a polynomial in degree at most n-1. That is, prove that there are scalars c_i such that

$$A^{-1} = c_{n-1}A^{n-1} + c_{n-2}A^{n-2} + \dots + c_1A + c_0I.$$

- 3. Let λ be an eigenvalue of A, and let N_i be the nullspace of $(A \lambda I)^i$. Elements of N_i are called *generalized eigenvectors* of λ . The special case of i = 1 are the ordinary ("genuine") eigenvectors. Prove that $A \lambda I$ extends to a well-defined map $N_{i+1}/N_i \longrightarrow N_i/N_{i-1}$, and that this mapping is 1–1.
- 4. Let A be an $n \times n$ matrix over \mathbb{C} with an eigenvalue λ and corresponding eigenvector v_1 . Let v_2 be a generalized eigenvector satisfying $(A \lambda I)v_2 = v_1$.
 - (a) Show that $A^N v_2 = \lambda^N v_2 + N \lambda^{N-1} v_1$, for any $N \in \mathbb{N}$.
 - (b) Show that $q(A)v_2 = q(\lambda)v_2 + q'(\lambda)v_1$, for any polynomial $q(t) \in \mathbb{C}[t]$.
 - (c) Give a formula (no proof needed) for $q(A)v_m$, where v_1, \ldots, v_m are generalized eigenvectors of A with $(A \lambda I)v_k = v_{k-1}$. Let $v_0 = 0$, for convenience.
- 5. Do the following for the matrix A below, and then repeat it for B:

$$A = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 2 & 1 & 2 & 1 \\ 0 & 0 & -1 & 0 \\ 4 & 0 & -6 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & -4 \\ 1 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad J_{\lambda} = \begin{bmatrix} \lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda \end{bmatrix}.$$

- (a) Find the characteristic and minimal polynomials, and all (genuine) eigenvectors.
- (b) For each eigenvalue λ , compute dim $N_{(A-\lambda I)^j}$ for $j=1,2,3,\ldots$
- (c) Find a basis \mathcal{B} of \mathbb{C}^4 consisting of generalized eigenvectors, so that the matrix with respect to this basis is $J = P^{-1}AP$, where J is a *Jordan matrix*. This means that J is block-diagonal formed from *Jordan blocks* J_{λ} ; see above.
- (d) A subspace $Y \subseteq \mathbb{C}^4$ is A-invariant if $A(Y) \subseteq Y$. Of the 16 subspaces spanned by subsets of \mathcal{B} , determine which ones are A-invariant.