Read: Lax, Chapter 7, pages 77–100.

1. Let $X = \mathbb{R}^3$, and define the inner product by

$$\langle x, y \rangle = y^T A x = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} \begin{bmatrix} 2 & -\sqrt{2} & 0 \\ -\sqrt{2} & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

Find the norm of the three unit basis vectors e_1 , e_2 , and e_3 , the angles between them, and the orthogonal complements of the lines that they span.

- 2. Given a linear map $A: X \to X$, define $f: X \to X$ by $f(x,y) = x^T A y$.
 - (a) Write the inner product $f(x,y) = 3x_1y_1 x_1y_2 x_2y_1 + 2x_2y_2 x_2y_3 x_3y_2 + 3x_3y_3$ as $f(x,y) = x^T Ay$.
 - (b) Find an orthonormal basis v_1, v_2, v_3 of \mathbb{R}^3 so that with respect to this basis, $f(z, w) = z^T Dw$ for some diagonal matrix D.
 - (c) Write a formula for f(z, w) like in Part (b), but with respect to this new basis.
 - (d) State and prove necessary and sufficient conditions on A for f to be an inner product.
- 3. Let Y, Z be subspaces of an inner product space X.
 - (a) Show that $Y \subseteq Y^{\perp \perp}$, with equality holding if dim $X < \infty$.
 - (b) Give an example of an infinite dimensinal space where equality does not hold.
 - (c) Show that $(Y+Z)^{\perp} = Y^{\perp} \cap Z^{\perp}$.
- 4. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by $y_1 = (1, 2, 1, 1), y_2 = (1, -1, 0, 2)$ and $y_3 = (2, 0, 1, 1)$.

Then write the vector v = (4, 1, 2, 4) in this basis.

5. Let X be the vector space of all continuous real-valued functions on [0,1]. Define an inner product on X by

$$(f,g) = \int_0^1 f(t)g(t) dt$$
.

Let Y be the subspace of X spanned by f_0, f_1, f_2, f_3 , where $f_k(x) = x^k$.

- (a) Use the Gram-Schmidt process to construct an orthonormal basis for Y.
- (b) Write $f(x) = 2x^3 x^2 + 4$ using your basis from Part (a).