Read: Lax, Chapter 7, pages 89-100.

1. Let $A: X \rightarrow U$ be a linear map between finite-dimensional inner product spaces, and let $A^{*}: U \rightarrow X$ denote the adjoint. Prove each of the following equalities:
(a) $N_{A^{*}}=R_{A}^{\perp}$
(c) $N_{A}=R_{A^{*}}^{\perp}$
(b) $R_{A^{*}}=N_{A}^{\perp}$
(d) $R_{A}=N_{A^{*}}^{\perp}$.
2. Let $A: X \rightarrow U$ be a linear map between finite-dimensional inner product spaces. The map A has a left inverse if there is a linear map $L: U \rightarrow X$ such that $L A=I_{X}$, the identity on X. It has a right inverse if there is a linear map $R: U \rightarrow X$ such that $A R=I_{U}$ is the identity on U.
(a) Prove that A maps $R_{A^{*}}$ bijectively onto R_{A}.
(b) Show that if A has a left inverse, then $A x=u$ has at most one solution. Give a condition on u that completely characterizes when there is a solution.
(c) Show that if A has a right inverse, then $A x=u$ has at least one solution. If $A x_{p}=u$ for some particular $x_{p} \in X$, then describe all solutions for x in this case. What condition ensures that there will be only one solution?
(d) What are the possibilities for the rank of A if it has a left inverse? What if it has a right inverse?
3. Recall that a projection $P: X \rightarrow X$ is a linear map such that $P^{2}=P$.
(a) Show that if P is a projection, then $X=R_{P} \oplus N_{P}$.
(b) Show that $R_{P}^{\perp}=N_{P}$ if and only if P is self-adjoint.
4. Consider four data points $(0,0),(1,8),(3,8)$, and $(4,20)$. In this problem, we will find the best fit line $C+D t$ through these points, using least squares.
(a) Write down an equation in matrix form, $A x=b$, where $x=(C, D)^{T}$, that has no solution because these four points are not co-linear.
(b) Find the best fit line by solving the related equation $A \hat{x}=p$, where p is the orthogonal projection of b onto the range of A.
(c) Repeat the previous steps to find the best fit parabola $C+D t+E t^{2}$.
5. Let X be a finite-dimensional real inner product space. We say that a sequence $\left\{A_{n}\right\}$ of linear maps converges to a limit A if $\lim _{n \rightarrow \infty}\left\|A_{n}-A\right\|=0$.
(a) Show that $\left\{A_{n}\right\}$ converges to A if and only if for all $x \in X, A_{n} x$ converges to $A x$.
(b) Show by example that this fails if $\operatorname{dim} X=\infty$.
