Read: Lax, Chapter 8, pages 101-120.

1. Let $N: X \rightarrow X$ be a normal mapping of an inner product space.
(a) Prove that $\|N\|=\max \left|n_{i}\right|$, where the n_{i} s are the eigenvalues of N.
(b) Show that N has a square-root, that is, a matrix R such that $N=R^{2}$. Is R necessarily normal? Unique?
2. Let $H: X \rightarrow X$ be self-adjoint, with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Prove the following max-min principle:

$$
\lambda_{k}=\max _{\operatorname{dim} S=k} \min _{x \in S \backslash 0} R_{H}(x) .
$$

3. For any positive mapping $M: X \rightarrow X$, define an inner product on X by $\langle x, y\rangle:=(x, M y)$. Throughout this problem, assume that $X=\mathbb{R}^{2}$ and $M=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$.
(a) Find two orthonormal bases for X that contain the vector $e_{1} /\left\|e_{1}\right\|$, where $e_{1}=(1,0)$.
(b) Find two orthonormal bases for X that contain the vector $e_{2} /\left\|e_{2}\right\|$, where $e_{2}=(0,1)$.
(c) Find an vector v_{2} orthogonal to $v_{1}=(1,1)$.
(d) Find a matrix H that is self-adjoint with respect to (,), but not with respect to \langle,$\rangle .$
4. Let $H, M: X \rightarrow X$ be self-adjoint mappings, and M positive.
(a) Formulate and prove a necessary and sufficient condition for $M^{-1} H$ to be self-adjoint with respect to the standard inner product.
(b) Prove that $M^{-1} H$ is self-adjoint with respect to the inner product $\langle x, y\rangle=(x, M y)$. Conclude that there exists a basis v_{1}, \ldots, v_{n} of X and $\mu_{1}, \ldots, \mu_{n} \in \mathbb{R}$ such that

$$
H v_{i}=\mu_{i} M v_{i}, \quad\left\langle v_{i}, v_{j}\right\rangle=\delta_{i j}
$$

(c) Find formulas for $\left\langle v_{i}, v_{j}\right\rangle$ and $\left\langle v_{i}, M^{-1} H v_{j}\right\rangle$ in terms of the standard inner product. (d) Show that if H is positive, then so is $M^{-1} H$.
5. Let $H, M: X \rightarrow X$ be self-adjoint mappings, M positive, and define $R_{H, M}(x)=\frac{(x, H x)}{(x, M x)}$.
(a) Show that $\mu_{1}:=\min \left\{R_{H, M}(x) \mid x \in X\right\}$ exists, and write an equation relating v_{1}, μ_{1}, H, and M.
(b) Show that there is some $v_{2} \in X$ solving the constrained minimum problem

$$
\mu_{2}:=\min \left\{R_{H, M}(x) \mid\left(x, M v_{1}\right)=0\right\} .
$$

Write an equation relating v_{2}, μ_{2}, H, and M.
(c) Find an invertible U and diagonal D such that $U^{*} M U=I$ and $U^{*} H U=D$.
(d) Characterize the diagonal entries of D by a min-max principle.

