Daily Schedule for MATH 8530

January

Monday	Tuesday	Wednesday	Thursday	Friday
		6 Welcome and class overview	7	(36:24) 8 Lecture 1.1 Vector spaces
(39:25) 11 Lecture 1.2 Spanning and linear independence	12	(63:20) 13 Lectures 1.3—1.4 Direct sums products, and quotients	14	(52:43) 15 Lecture 1.5—1.6 Duality HW 1 due
18 No class: MLK Day	19	(31:31) 20 Lecture 2.1 Rank and nullity	21	(38:40) 22 Lecture 2.2 Applications of the rank-nullity theorem HW 2 due
(35:23) 25 Lecture 2.3 Algebra of linear maps	26	(43:09) 27 Lecture 2.4 The four fundamental subspaces	(64:24) 28	(41:07) 29 Lecture 2.5 The transpose of a linear map HW 3 due

February

Monday	Tuesday	Wednesday	Thursday	Friday
(62:59) 1 Lectures 2.6—2.7 The matrix of a linear map; change of basis	2	(58:03) 3 Lecture 3.1—3.2 Multilinear forms	4	(41:56) 5 Lecture 3.3 Alternating multilinear forms HW 4 due
(33:30) 8 Lecture 3.4 Determinant of a linear map	9	(65:12) 10 Lectures 3.5—6 Determinant and trace of a matrix	11	(56:25) 12 Lecture 3.7 Tensor products HW 5 due
(56:25) 15 Lecture 4.1 Eigenvalues and eigenvectors	16	(49:20) 17 Lecture 4.2 The Cayley-Hamilton theorem	18	(29:29) 19 Lecture 4.3 Generalized eigenvectors HW 6 due
(63:54) 22 <u>MIDTERM 1</u>	23	(41:31) 24 Lecture 4.4 The spectral theorem and generalized eigenspaces	(64:24) 25	(59:40) 26 Lectures 4.5—4.6 The spectral theorem and generalized eigenspaces HW 7 due

March

Monday	Tuesday	Wednesday	Thursday	Friday
(??:??) 1	2	(??:??) 3	(56:64) 4	(41:52) 5
Lecture 4.7—4.8		Lecture 4.9		Lecture 5.1
Jordan canonical form;		Rational canonical form		Inner products and
differential operators				Euclidean structure
				HW 8 due
(48:14) 8	9	(52:29) 10	11	(56:49) 12
Lecture 5.2		Lecture 5.3		Lecture 5.4—5.5
Orthogonality		Gram-Schmidt and		Adjoints and least
		orthogonal projection		squares
				HW 9 due
15	16	17	18	19
SPRING BREAK		SPRING BREAK		SPRING BREAK
(32:19) 22	23	(47:06) 24	25	(??:??) 26
Lecture 5.6		Lecture 5.7		Lectures 5.8—5.9
Isometries		Norms of linear maps		Sequences,
				convergence,
				complex inner products
				HW 10 due
29	30	(36:11) 31	1	(38.56) 2
MIDTERM 2		Lecture 6.1		Lecture 6.2
		Quadratic forms		Spectral resolutions
				HW 11 duo
L			1	

April

Monday	Tuesday	Wednesday	Thursday	Friday
(35:07) 5 Lecture 6.3 Normal linear maps	6	(53:09) 7 Lecture 6.4 The Rayleigh quotient	8	(??:??) 9 Lecture 6.5 Self-adjoint differential operators; Sturm- Liouville theory HW 12 due
(??:??) 12 Lecture 7.1—7.2 Positive definite maps; generalized Rayleigh quotients	13	(??:??) 14 Lecture 7.3 Gram matrices	15	(??:??) 16 Lecture 7.4 Polar decomposition HW 13 due
(??:??) 19 Lecture 7.5 Singular value decomposition	20	(??:??) 21 Lecture 7.6 Partially ordering positive maps	22	(??:??) 23 Lecture 7.7 Monotone matrix functions HW 14 due

Copyright © 2021 Clemson University. All rights reserved. Comments to: macaule@clemson.edu Last Updated: April 16, 2021