Lecture 1.1: Vector spaces and linearity

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Algebraic structures

Definition

A group is a set G and associative binary operation $*$ with:

- closure: $a, b \in G$ implies $a * b \in G$;
- identity: there exists $e \in G$ such that $a * e=e * a=a$ for all $a \in G$;
- inverses: for all $a \in G$, there is $b \in G$ such that $a * b=e$.

A group is abelian if $a * b=b * a$ for all $a, b \in G$.

Definition

A field is a set \mathbb{F} (or K) containing $1 \neq 0$ with two binary operations: + (addition) and . (multiplication) such that:
(i) \mathbb{F} is an abelian group under addition;
(ii) $\mathbb{F} \backslash\{0\}$ is an abelian group under multiplication;
(iii) The distributive law holds: $a(b+c)=a b+a c$ for all $a, b, c \in \mathbb{F}$.

Remarks

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ (prime p), $\mathbb{Q}(\sqrt{2}):=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ are all fields.
$-\mathbb{Z}$ is not a field. Nor is \mathbb{Z}_{n} (composite n).
- the additive identity is 0 , and the inverse of a is $-a$.
- the multiplicative identity is 1 , and the inverse of a is a^{-1}, or $\frac{1}{a}$.

Vector spaces

Definition

A vector space is a set X ("vectors") over a field \mathbb{F} ("scalars") such that:
(i) X is an abelian group under addition;
(ii) X is closed under scalar multiplication;
(iii) + and \cdot are "compatible" via natural associative and distributive laws relating the two:

- $a(b v)=(a b) v$,
- $a(v+w)=a v+a w$,
- $(a+b) v=a v+b v$,
- $1 v=v$,
for all $a, b \in \mathbb{F}, v \in X$; for all $a \in \mathbb{F}, v, w \in X$; for all $a, b \in \mathbb{F}, v \in X$; for all $v \in X$.

Intuition

Think of a vector space as a set of vectors that is:
(i) Closed under addition, subtraction, and scalar multiplication;
(ii) Equipped with the "natural" associative and distributive laws.

Proposition (exercise)

In any vector space X,
(i) The zero vector $\mathbf{0}$ is unique;
(ii) $0 x=\mathbf{0}$ for all $x \in X$;
(iii) $(-1) x=-x$ for all $x \in X$.

Linear maps

Definition

A linear map between vector spaces X and Y over \mathbb{F} is a function $\varphi: X \rightarrow Y$ satisfying:

- $\varphi(v+w)=\varphi(v)+\varphi(w)$,
- $\varphi(a v)=a \varphi(v)$, for all $v, w \in X$; for all $a \in \mathbb{F}, v \in X$.

An isomorphism is a linear map that is bijective ($1-1$ and onto).

Proposition

The two conditions for linearity above can be replaced by the single condition:

$$
\varphi(a v+b w)=a \varphi(v)+b \varphi(w), \quad \text { for all } v, w \in X \text { and } a, b \in \mathbb{F}
$$

Examples of vector spaces

(i) $K^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{i} \in K\right\}$. Addition and multiplication are defined componentwise.
(ii) Set of functions $\mathbb{R} \longrightarrow \mathbb{R}$ (with $K=\mathbb{R}$).
(iii) Set of functions $S \longrightarrow K$ for an abitrary set S.
(iv) Set of polynomials of degree $<n$, with coefficients from K.

Exercise

In the list of vector spaces above, (i) is isomorphic to (iv), and to (iii) if $|S|=n$.

Subspaces

Definition

A subset Y of a vector space X is a subspace if it too is a vector space.

Examples

(i) $Y=\left\{\left(0, a_{2}, \ldots, a_{n-1}, 0\right): a_{i} \in K\right\} \subseteq K^{n}$.
(ii) $Y=\{$ functions with period $T \mid \pi\} \subseteq\{$ functions $\mathbb{R} \rightarrow \mathbb{R}\}$.
(iii) $Y=\{$ constant functions $S \rightarrow K\} \subseteq\{$ functions $S \rightarrow K\}$.
(iv) $Y=\left\{a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots+a_{n-1} x^{n-1}: a_{i} \in K\right\} \subseteq\{$ polynomials of degree $<n\}$.

Definition

If Y and Z are subsets of a vector space X, then their:

- sum is $Y+Z=\{y+z \mid y \in Y, z \in Z\}$;
- intersection is $Y \cap Z=\{x \mid x \in Y, x \in Z\}$.

Exercise

If Y and Z are subspaces of X, then $Y+Z$ and $Y \cap Z$ are also subspaces.

