Lecture 1.1: Vector spaces and linearity

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Algebraic structures

Definition

A group is a set G and associative binary operation * with:

- closure: $a, b \in G$ implies $a * b \in G$;
- **identity**: there exists $e \in G$ such that a * e = e * a = a for all $a \in G$;
- inverses: for all $a \in G$, there is $b \in G$ such that a * b = e.

A group is abelian if a * b = b * a for all $a, b \in G$.

Definition

A field is a set \mathbb{F} (or K) containing $1 \neq 0$ with two binary operations: + (addition) and \cdot (multiplication) such that:

(i) \mathbb{F} is an abelian group under addition;

(ii) $\mathbb{F} \setminus \{0\}$ is an abelian group under multiplication;

(iii) The distributive law holds: a(b+c) = ab + ac for all $a, b, c \in \mathbb{F}$.

Remarks

- \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p (prime p), $\mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ are all fields.
- **\square** \mathbb{Z} is not a field. Nor is \mathbb{Z}_n (composite *n*).
- the additive identity is 0, and the inverse of a is -a.
- the multiplicative identity is 1, and the inverse of a is a^{-1} , or $\frac{1}{a}$.

Vector spaces

Definition

A vector space is a set X ("vectors") over a field \mathbb{F} ("scalars") such that:

- (i) X is an abelian group under addition;
- (ii) X is closed under scalar multiplication;
- (iii) + and \cdot are "compatible" via natural associative and distributive laws relating the two:

• $a(bv) = (ab)v$,	for all $a, b \in \mathbb{F}$, $v \in X$;
a(v+w) = av + aw,	for all $a \in \mathbb{F}$, $v, w \in X$;
(a+b)v = av + bv,	for all $a, b \in \mathbb{F}$, $v \in X$;
• $1v = v$,	for all $v \in X$.

Intuition

Think of a vector space as a set of vectors that is:

- (i) Closed under addition, subtraction, and scalar multiplication;
- (ii) Equipped with the "natural" associative and distributive laws.

Proposition (exercise)

In any vector space X,

- (i) The zero vector **0** is unique;
- (ii) $0x = \mathbf{0}$ for all $x \in X$;

(iii)
$$(-1)x = -x$$
 for all $x \in X$.

Linear maps

Definition

A linear map between vector spaces X and Y over \mathbb{F} is a function $\varphi: X \to Y$ satisfying:

- $\varphi(v+w) = \varphi(v) + \varphi(w),$ for all $v, w \in X;$
- $\varphi(av) = a \varphi(v)$, for all $a \in \mathbb{F}$, $v \in X$.

An isomorphism is a linear map that is bijective (1-1 and onto).

Proposition

The two conditions for linearity above can be replaced by the single condition:

$$\varphi(av + bw) = a\varphi(v) + b\varphi(w),$$
 for all $v, w \in X$ and $a, b \in \mathbb{F}$

Examples of vector spaces

- (i) $K^n = \{(a_1, \ldots, a_n) : a_i \in K\}$. Addition and multiplication are defined componentwise.
- (ii) Set of functions $\mathbb{R} \longrightarrow \mathbb{R}$ (with $K = \mathbb{R}$).
- (iii) Set of functions $S \longrightarrow K$ for an abitrary set S.
- (iv) Set of polynomials of degree < n, with coefficients from K.

Exercise

In the list of vector spaces above, (i) is isomorphic to (iv), and to (iii) if |S| = n.

Subspaces

Definition

A subset Y of a vector space X is a subspace if it too is a vector space.

Examples

- (i) $Y = \{(0, a_2, \dots, a_{n-1}, 0) : a_i \in K\} \subseteq K^n$.
- (ii) $Y = \{ \text{functions with period } T | \pi \} \subseteq \{ \text{functions } \mathbb{R} \to \mathbb{R} \}.$
- (iii) $Y = \{ \text{constant functions } S \to K \} \subseteq \{ \text{functions } S \to K \}.$

 $(\mathsf{iv}) \ \mathbf{Y} = \{\mathbf{a}_0 + \mathbf{a}_2 x^2 + \mathbf{a}_4 x^4 + \dots + \mathbf{a}_{n-1} x^{n-1} : \mathbf{a}_i \in K\} \subseteq \{\mathsf{polynomials of degree} < n\}.$

Definition

If Y and Z are subsets of a vector space X, then their:

- sum is $Y + Z = \{y + z \mid y \in Y, z \in Z\};$
- intersection is $Y \cap Z = \{x \mid x \in Y, x \in Z\}.$

Exercise

If Y and Z are subspaces of X, then Y + Z and $Y \cap Z$ are also subspaces.