Lecture 1.3: Direct products and sums

Matthew Macauley

Department of Mathematical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

In previous lectures, we learned about vectors spaces and subspaces.
We learned about what it meant for a subset to span, to be linearly independent, and to be a basis.

In this lecture, we will see how to create new vector spaces from old ones.
We will see several ways to "multiply" vector spaces together, and will learn how to construct:

- the complement of a subspace
- the direct sum of two subspaces
- the direct product of two vector spaces

Complements and direct sums

Theorem 1.5

(a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional.
(b) Every subspace Y has a complement in X : another subspace Z such that every vector $x \in X$ can be written uniquely as

$$
x=y+z, \quad y \in Y, z \in Z, \quad \operatorname{dim} X=\operatorname{dim} Y+\operatorname{dim} Z
$$

Proof

Definition

X is the direct sum of subspaces Y and Z that are complements of each other.
More generally, X is the direct sum of subspaces Y_{1}, \ldots, Y_{m} if every $x \in X$ can be expressed uniquely as

$$
x=y_{1}+\cdots+y_{m}, \quad y_{i} \in Y_{i}
$$

We denote this as $X=Y_{1} \oplus \cdots \oplus Y_{m}$.

Direct products

Definition

The direct product of X_{1} and X_{2} is the vector space

$$
X_{1} \times X_{2}:=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in X_{1}, x_{2} \in X_{2}\right\}
$$

with addition and multiplication defined component-wise.

Proposition

- $\operatorname{dim}\left(Y_{1} \oplus \cdots \oplus Y_{m}\right)=\sum_{i=1}^{m} \operatorname{dim} Y_{i} ;$
- $\operatorname{dim}\left(X_{1} \times \cdots \times X_{m}\right)=\sum_{i=1}^{m} \operatorname{dim} X_{i}$.

Example

Let $X=\mathbb{R}^{4}, \quad Y_{1}=\{(a, b, 0,0) \mid a, b \in \mathbb{R}\}, \quad Y_{2}=\{(0,0, c, d) \mid c, d \in \mathbb{R}\}, \quad X_{1}=X_{2}=\mathbb{R}^{2}$.

Clearly, $X=Y_{1} \oplus Y_{2}$, since $(a, b, c, d)=(a, b, 0,0)+(0,0, c, d) \quad$ [uniquely].

$$
X_{1} \times X_{2}=\left\{((a, b),(c, d)) \mid(a, b) \in \mathbb{R}^{2},(c, d) \in \mathbb{R}^{2}\right\} \cong\{(a, b, c, d) \mid a, b, c, d \in \mathbb{R}\}=X
$$

Direct sums vs. direct products

In the finite-dimensional cases, there is no difference (up to isomorphism) of direct sums vs. direct products.

Not the case when $\operatorname{dim} X=\infty$. Consider the vector space:

$$
X=\mathbb{R}^{\infty}:=\left\{\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mid a_{i} \in \mathbb{R}\right\} \cong \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots
$$

and the following subspaces:

$$
X_{1}=\left\{\left(a_{1}, 0,0,0, \ldots,\right) \mid a_{1} \in \mathbb{R}\right\}, \quad X_{2}=\left\{\left(0, a_{2}, 0,0, \ldots,\right) \mid a_{2} \in \mathbb{R}\right\}, \quad \text { and so on. }
$$

Elements in the subspace $X_{1} \oplus X_{2} \oplus X_{3} \oplus \cdots$ of X are finite sums

$$
x=x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}}, \quad x_{i_{j}} \in X_{i_{j}}
$$

Thus, we can write the direct sum as follows:

$$
X_{1} \oplus X_{2} \oplus X_{3} \oplus \cdots=\left\{\left(a_{1}, \ldots, a_{k}, 0,0, \ldots\right) \mid a_{i} \in \mathbb{R}, k \in \mathbb{Z}\right\} \subsetneq \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \cdots
$$

- Elements in the direct product are sequences, e.g., $x=(1,1,1, \ldots)$.
- Elements in the direct sum are finite sums, e.g., $x=3 e_{1}-5.25 e_{4}+78 e_{11}$.

