Lecture 1.5: Dual vector spaces

Matthew Macauley

School of Mathematical \& Statistical Sciences
 Clemson University
 http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Scalar functions

Let X be a vector space over a field K. A scalar function is any function from X to K.
A scalar function $\ell: X \rightarrow K$ is linear if

- $\ell(x+y)=\ell(x)+\ell(y)$, for all $x, y \in X$;
- $\ell(c x)=c \ell(x)$, for all $x \in X, c \in K$.

Or equivalently, if

$$
\ell\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)=c_{1} \ell\left(x_{1}\right)+\cdots+c_{n} \ell\left(x_{n}\right), \quad \text { for all } c_{i} \in K, x_{i} \in X
$$

Definition

The set of linear scalar functions $\ell: X \rightarrow K$ is a vector space called the dual of X, and denoted X^{\prime}.

Addition and scalar multiplication is defined naturally:

- Addition: $(\ell+m)(x):=\ell(x)+m(x)$,
- Scalar multiplication: $(c \ell)(x):=c \ell(x)$.

Examples of scalar functions

Example 1

Let $X=\mathcal{C}([0,1], \mathbb{R})$, the continuous functions $[0,1] \rightarrow \mathbb{R}$, and fix $t_{1}, \ldots, t_{n} \in[0,1]$. The following are linear scalar functions:

- $\ell(f)=f\left(t_{1}\right)$;
- $\ell(f)=\sum_{i=1}^{n} a_{i} f\left(t_{i}\right), \quad a_{i} \in \mathbb{R} ;$
- $\ell(f)=\int_{0}^{1} f(t) d t$.

Example 2

Let $X=\mathcal{C}^{\infty}(\mathbb{R})$ be the set of smooth functions $\mathbb{R} \rightarrow \mathbb{R}$. For a fixed $t_{0} \in \mathbb{R}$,

$$
\ell:=\left.\sum_{i=1}^{n} a_{i} \frac{d^{i}}{d t^{i}}\right|_{t=t_{0}}, \quad \ell:\left.f \longmapsto \sum_{i=1}^{n} a_{i} \frac{d^{i} f}{d t^{i}}\right|_{t=t_{0}}
$$

is a linear scalar function (i.e., an element of X^{\prime}).

The dual space

If $\operatorname{dim} X=n$, then $X \cong K^{n}$. Thus, we can associate a vector $x \in X$ with an n-tuple $x=\left(c_{1}, \ldots, c_{n}\right)$ of scalars.

For any fixed $a_{1}, \ldots, a_{n} \in K$, the function

$$
\begin{equation*}
\ell: X \longrightarrow K, \quad \ell(x)=a_{1} c_{1}+\cdots+a_{n} c_{n} \tag{1}
\end{equation*}
$$

is linear, i.e., $\ell \in X^{\prime}$.

Theorem 1.8

If $\operatorname{dim} X=n<\infty$, then every $\ell \in X^{\prime}$ can be written as in Eq. (1).

Proof

The dual space

Corollary 1.9

If $\operatorname{dim} X<\infty$, then $X \cong X^{\prime}$.

One way to think of this is to:

1. associate a vector $x \in X$ with a column vector,
2. associate a scalar function $\ell \in X^{\prime}$ with a row vector.

Notation

A linear function $\ell \in X^{\prime}$ applied to a vector $x \in X$ depends on the n-tuples $\left(c_{1}, \ldots, c_{n}\right)$ for x and $\left(a_{1}, \ldots, a_{n}\right)$ for ℓ. We can use scalar product notation

$$
(\ell, x):=\ell(x)
$$

Sometimes, elements $\ell \in X^{\prime}$ are called co-vectors, or dual vectors.

Definition

Let x_{1}, \ldots, x_{n} be a basis for X. The dual basis in X^{\prime} is $\ell_{1}, \ldots, \ell_{n}$, where

$$
\left(\ell_{i}, x_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Think of ℓ_{i} as the function that "picks off" the coefficient of x_{i}.

Duality in infinite dimensional spaces

Consider the vector space

$$
X=\ell^{1}(\mathbb{R}):=\left\{\left(x_{1}, x_{2}, \ldots\right)\left|x_{i} \in \mathbb{R}, \sum_{i=1}^{\infty}\right| x_{i} \mid<\infty\right\} .
$$

Given vectors $y=\left(a_{1}, a_{2}, \ldots\right)$ and $x=\left(c_{1}, c_{2}, \ldots\right)$,

$$
(y, x)=\sum_{i=1}^{\infty} a_{i} c_{i}<\infty
$$

so every $y \in X$ defines a co-vector in X^{\prime}.
But there are others! If $z=(1,1,1, \ldots)$,

$$
(z, x)=\sum_{i=1}^{\infty} c_{i}<\infty
$$

but $z \notin X$.

The double dual

The scalar product (ℓ, x) is a bilinear function of ℓ and x. That is, if we fix one argument, it is linear in the other. Equivalently,

$$
\underbrace{(a \ell, x)}_{=a \ell(x)}=a(\ell, x)=\underbrace{(\ell, a x)}_{\ell(a x)} \quad \text { for all } x \in X, \ell \in X^{\prime}, a \in K .
$$

If $\operatorname{dim} X=n<\infty$, then every linear scalar function $X \rightarrow K$ is of the form

$$
(\ell, x), \quad \text { for some fixed } \ell=\left(a_{1}, \ldots, a_{n}\right) \in K^{n} .
$$

Since X^{\prime} is a vector space, it has a dual, called the double dual of X, and denoted $X^{\prime \prime}:=\left(X^{\prime}\right)^{\prime}$. Every linear scalar function $X^{\prime} \rightarrow K$ is of the form

$$
(\ell, x), \quad \text { for some fixed } x=\left(c_{1}, \ldots, c_{n}\right) \in K^{n} .
$$

Key points

Let x_{1}, \ldots, x_{n} be a basis of X

- Think of the dual basis $\ell_{1}, \ldots, \ell_{n}$ as "pick-off functions"
- Think of elements in the double dual as "evaluation functions"

The bilinear function (ℓ, x) naturally identifies $X^{\prime \prime}$ with X.

