Lecture 1.6: Annihilators

Matthew Macauley

School of Mathematical \& Statistical Sciences Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Overview

Last time, we defined the dual of a vector space X to be the set X^{\prime} of linear scalar functions $X \rightarrow K$.

We saw that if $\operatorname{dim} X=n<\infty$, then $X \cong X^{\prime}$.
Think of $x \in X$ as a column vector, and $\ell \in X^{\prime}$ as a row vector.
The bilinear scalar product notation

$$
(\ell, x):=\ell(x)
$$

canonically identifies the double dual $X^{\prime \prime}$ with X.
In this lecture, we will study the annihilator of a subspace $Y \leq X$, which is the subspace $Y^{\perp} \leq X^{\prime}$ of functions that are zero on all $y \in Y$.

We will determine its dimension (called the codimension of Y), and also understand what $Y^{\perp \perp}$ is.

Annihilators

Definition

Let $Y \leq X$. The set of linear functions that vanish on Y is its annihilator, denoted

$$
Y^{\perp}=\left\{\ell \in X^{\prime} \mid \ell(y)=0, \forall y \in Y\right\} .
$$

Theorem 1.10

Let $Y \leq X$ with $\operatorname{dim} X<\infty$. Then

$$
\operatorname{dim} Y+\operatorname{dim} Y^{\perp}=\operatorname{dim} X
$$

Proof

The annihilator of the annihilator

Definition

The dimension of Y^{\perp} is called the codimension of Y in X, denoted $\operatorname{codim} Y$.

By Theorem 1.10,

$$
\operatorname{dim} Y+\operatorname{codim} Y=\operatorname{dim} X
$$

Since Y^{\perp} is a subspace of X^{\prime}, its annihilator $Y^{\perp \perp}$ is a subspace of $X^{\prime \prime}$.

Theorem 1.11

Assume $\operatorname{dim} X<\infty$ and identify $X^{\prime \prime}$ with X. Then $Y^{\perp \perp}=Y$.

Proof

The annihilator of a subset

We can define the annihilator of an arbitrary subset $S \subseteq X$, as

$$
S^{\perp}:=\left\{\ell \in X^{\prime} \mid \ell(s)=0, \forall s \in S\right\} .
$$

Recall that the smallest subspace containing S is

$$
\operatorname{Span}(S)=\bigcap_{S \subseteq Y_{\alpha} \leq X} Y_{\alpha}
$$

Exercise

Let $S \subseteq X$, and $\operatorname{dim} X<\infty$. Then $S^{\perp}=\operatorname{Span}(S)^{\perp}$.

