Lecture 2.1: Rank and nullity

Matthew Macauley

Math 8530, Advanced Linear Algebra

Preliminaries

Goal

Abstract the concept of a matrix as a linear mapping between vector spaces.

Advantages:

- simple, transparent proofs;
- better handles infinite dimensional spaces.

Definition (revisted)

A linear map (or mapping, transformation, or operator) between vector spaces X and U over K is a function $T: X \to U$ that is:

- (i) <u>additive</u>: T(x + y) = T(x) + T(y), for all $x, y \in X$,
- (ii) homogeneous: T(ax) = aT(x), for all $x \in X$, $a \in K$.

The domain space is X and the target space is U.

Usually we'll write Tx for T(x), and so additivity is just the distributive law:

$$T(x+y)=Tx+Ty.$$

Examples of linear maps

(i) Any isomorphism;

(ii)
$$X = U = \{ \text{polynomials of degree } < n \text{ in } t \}, T = \frac{d}{dt}.$$

(iii) $X = U = \mathbb{R}^2$, T = rotation about the origin.

(iv) X any vector space, U = K (1-dimensional), T any $\ell \in X'$.

(v)
$$X = U = C([0, 1], \mathbb{R}), g \in X.$$
 $(Tf)(x) = \int_0^1 f(y)g(x - y) dy.$

(vi)
$$X = \mathbb{R}^n$$
, $U = \mathbb{R}^m$, $u = Tx$, where $u_i = \sum_{j=1}^n t_{ij}x_j$, $i = 1, \dots, m$.

(vii)
$$X = U = \{ \text{piecewise cont. } [0, \infty) \to \mathbb{R} \text{ of "exponential order"} \}$$

 $(Tf)(s) = \int_0^\infty f(t)e^{-st} dt.$ "Laplace transform"

(viii)
$$X = U = \{$$
functions with $\int_{-\infty}^{\infty} |f(x)| dx < \infty \},$
 $(Tf)(\xi) = \int_{-\infty}^{\infty} f(x)e^{i\xi x} dx.$ "Fourier transform"

,

Basic properties

Theorem 2.1

Let $T: X \to U$ be a linear map.

(a) The image of a subspace of X is a subspace of U.

(b) The preimage of a subspace of U is a subspace of X.

(Proof is a HW exercise.)

Definition

The range of T is the image $R_T := T(X)$. The rank of T is dim R_T .

The nullspace (or "kernel") of T is the preimage of 0:

$$N_T := T^{-1}(0) = \{x \in X \mid Tx = 0\}.$$

The nullity of T is dim N_T .

Remark

A linear map $T: X \to U$ is 1–1 if and only if $N_T = \{0\}$.

The rank-nullity theorem

Theorem 2.2

Let $T: X \to U$ be a linear map. Then dim $R_T + \dim N_T = \dim X$.

Proof

Consequences of the rank-nullity theorem

Corollary A

Suppose dim $U < \dim X$. Then Tx = 0 for some $x \neq 0$.

Proof

Example A

Take $X = \mathbb{R}^n$, $U = \mathbb{R}^m$, with m < n. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be any linear map (see Example (vi)).

Since $m = \dim U < \dim X < n$, Corollary A implies that the system of m equations

$$\sum_{j=1}^n t_{ij} x_j = 0 \qquad i = 1, \dots, m$$

has a non-trivial solution, i.e., not all $x_i = 0$.

Consequences of the rank-nullity theorem

Corollary B

Suppose dim $X = \dim U < \infty$ and the only vector satisfying Tx = 0 is x = 0. Then $R_T = U$.

Proof

Example B

Take
$$X = U = \mathbb{R}^n$$
, and $T : \mathbb{R}^n \to \mathbb{R}^n$ given by $\sum_{j=1}^n t_{ij} x_j = u_i$, for $i = 1, ..., n$.

If the related homogeneous system of equations $\sum_{j=1} t_{ij}x_j = 0$, for i = 1, ..., n, has only the trivial solution $x_1 = \cdots = x_n = 0$, then the inhomogeneous system T has a unique solution for any choice of $u_1 ..., u_n$.

[*Reason*: $T : \mathbb{R}^n \to \mathbb{R}^n$ is an isomorphism.]