Lecture 2.1: Rank and nullity

Matthew Macauley

School of Mathematical \& Statistical Sciences
 Clemson University
 http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Preliminaries

Goal

Abstract the concept of a matrix as a linear mapping between vector spaces.
Advantages:

- simple, transparent proofs;
- better handles infinite dimensional spaces.

Definition (revisted)

A linear map (or mapping, transformation, or operator) between vector spaces X and U over K is a function $T: X \rightarrow U$ that is:
(i) additive: $T(x+y)=T(x)+T(y)$, for all $x, y \in X$,
(ii) homogeneous: $T(a x)=a T(x)$, for all $x \in X, a \in K$.

The domain space is X and the target space is U.

Usually we'll write T_{x} for $T(x)$, and so additivity is just the distributive law:

$$
T(x+y)=T x+T y
$$

Examples of linear maps

(i) Any isomorphism;
(ii) $X=U=\{$ polynomials of degree $<n$ in t$\}, \quad T=\frac{d}{d t}$.
(iii) $X=U=\mathbb{R}^{2}, \quad T=$ rotation about the origin.
(iv) X any vector space, $U=K$ (1-dimensional), T any $\ell \in X^{\prime}$.
(v) $X=U=\mathcal{C}([0,1], \mathbb{R}), g \in X . \quad(T f)(x)=\int_{0}^{1} f(y) g(x-y) d y$.
(vi) $X=\mathbb{R}^{n}, U=\mathbb{R}^{m}, u=T \times$, where $u_{i}=\sum_{j=1}^{n} t_{i j} x_{j}, \quad i=1, \ldots, m$.
(vii) $X=U=\{$ piecewise cont. $[0, \infty) \rightarrow \mathbb{R}$ of "exponential order" $\}$, $(T f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$. "Laplace transform"
(viii) $X=U=\left\{\right.$ functions with $\left.\int_{-\infty}^{\infty}|f(x)| d x<\infty\right\}$, $(T f)(\xi)=\int_{-\infty}^{\infty} f(x) e^{i \xi x} d x$. "Fourier transform"

Basic properties

Theorem 2.1

Let $T: X \rightarrow U$ be a linear map.
(a) The image of a subspace of X is a subspace of U.
(b) The preimage of a subspace of U is a subspace of X.
(Proof is a HW exercise.)

Definition

The range of T is the image $R_{T}:=T(X)$. The rank of T is $\operatorname{dim} R_{T}$.
The nullspace (or "kernel") of T is the preimage of 0 :

$$
N_{T}:=T^{-1}(0)=\{x \in X \mid T X=0\}
$$

The nullity of T is $\operatorname{dim} N_{T}$.

Remark

A linear map $T: X \rightarrow U$ is $1-1$ if and only if $N_{T}=\{0\}$.

The rank-nullity theorem

Theorem 2.2
Let $T: X \rightarrow U$ be a linear map. Then $\operatorname{dim} R_{T}+\operatorname{dim} N_{T}=\operatorname{dim} X$.
Proof

Consequences of the rank-nullity theorem

Corollary A

Suppose $\operatorname{dim} U<\operatorname{dim} X$. Then $T x=0$ for some $x \neq 0$.

Proof

Example A

Take $X=\mathbb{R}^{n}, U=\mathbb{R}^{m}$, with $m<n$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be any linear map (see Example (vi)).

Since $m=\operatorname{dim} U<\operatorname{dim} X<n$, Corollary A implies that the system of m equations

$$
\sum_{j=1}^{n} t_{i j} x_{j}=0 \quad i=1, \ldots, m
$$

has a non-trivial solution, i.e., not all $x_{j}=0$.

Consequences of the rank-nullity theorem

Corollary B

Suppose $\operatorname{dim} X=\operatorname{dim} U<\infty$ and the only vector satisfying $T x=0$ is $x=0$. Then $R_{T}=U$.

Proof

Example B

Take $X=U=\mathbb{R}^{n}$, and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $\sum_{j=1}^{n} t_{i j} x_{j}=u_{i}$, for $i=1, \ldots, n$.
If the related homogeneous system of equations $\sum_{j=1}^{n} t_{i j} x_{j}=0$, for $i=1, \ldots, n$, has only the trivial solution $x_{1}=\cdots=x_{n}=0$, then the inhomogeneous system T has a unique solution for any choice of $u_{1} \ldots, u_{n}$.
[Reason: $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an isomorphism.]

