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Overview

In the last lecture, we learned about a fundamental result of linear maps.

Rank-nullity theorem

Let T : X → U be a linear map. Then dimRT + dimNT = dimX .

In this lecture, we will show how this theoretical result has surprising implications, involving
polynomials, ODEs, and PDEs.

We will also use the following simple corollary from the previous lecture:

Corollary B

Suppose dimX = dimU <∞ and the only vector satisfying Tx = 0 is x = 0. Then RT = U.
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Polynomial interpolation

Let X =
{
p ∈ C[x] | deg p < n

}
and U = Cn.

Pick any distinct s1, . . . , sn ∈ C, and define

T : X −→ U, T : p 7→
(
p(s1), . . . , p(sn)

)
.

Suppose Tp = 0 for some p ∈ X .

Then p(s1) = · · · = p(sn) = 0, which is impossible because p has at most n − 1 distinct
roots.

Therefore NT = {0}, and so Corollary B implies that RT = U.
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Average value of a polynomial

Let X =
{
p ∈ R[x] | deg p < n

}
and U = Rn.

Let I1, . . . , In ⊆ R be pairwise disjoint intervals.

The average value of p over Ij is

pj :=
1

|Ij |

∫
Ij

p(t) dt.

Define the linear function

T : X −→ U, Tp = (p1, . . . , pn).

Suppose Tp = 0. Then pj = 0 for all j , and so any nonzero p must change sign in Ij .

But this would imply that p has n distinct roots, which is impossible.

Thus, NT = {0}, and so RT = U.
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Systems of equations

Our next two applications will rely on the following result from the previous lecture.

Example B

Take X = U = Rn, and T : Rn → Rn given by
n∑

j=1

tijxj = ui , for i = 1, . . . , n.

If the related homogeneous system of equations
n∑

j=1

tijxj = 0, for i = 1, . . . , n, has only the

trivial solution x1 = · · · xn = 0, then the inhomogeneous system T has a unique solution.

Recall that this followed from:

Corollary B

Suppose dimX = dimU and the only vector satisfying Tx = 0 is x = 0. Then RT = U.

M. Macauley (Clemson) Lecture 2.2: Applications of the rank-nullity theorem Math 8530, Advanced Linear Algebra 5 / 8

mailto:macaule@clemson.edu


ODEs: the method of undetermined coefficients

Consider the differential equation

ay ′′ + by ′ + cy︸ ︷︷ ︸
homogeneous part

= 5e3t cos 4t︸ ︷︷ ︸
“forcing term”, f (t)

In an ODEs class, you learn that the general solution has the form y(t) = yh(t) + yp(t).

Here, yh(t) is the general solution to the homogeneous equation ay ′′ + by ′ + cy = 0, i.e.,
the nullspace of

L : C∞(R) −→ C∞(R), L : y 7−→ ay ′′ + by ′ + cy .

If the forcing term f (t) = 5e3t cos 4t doesn’t solve the homogeneous equation, we can find
a“particular solution” of the form yp(t) = Ae3t cos 4t + Be3t sin 4t.

But why does this work? Let X = Span(e3t cos 4t, e3t sin 4t).

The only solution to the homogeneous equation Ly = 0 in X is y = 0.

We are trying to solve the inhomogeneous equation Ly = f , and f ∈ X .

By Example B, there is a unique yp ∈ X satisfying Lyp = f .
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PDEs: numerical solutions to Laplace’s equation

Laplace’s equation is ∆u = uxx + uyy = 0, where ∆ = ∂2

∂x2 + ∂2

∂y2 is a linear operator.

Solutions to Laplace’s PDE (“harmonic functions”) are the functions in the nullspace of ∆.

If we fix the value of u on the boundary of a region G ⊂ R2, the solution to the boundary
value problem ∆u = 0 is as “flat as possible”. [Think: plastic wrap stretched around ∂G .]

This models steady-state solutions to the heat equation PDE: ut = ∆u.

The finite difference method is a way to solve ∆u = 0 numerically, using a square lattice
with mesh spacing h > 0.

At a fixed lattice point O, let u0 be the value of u at O, and uW , uE , uN , uS be the values
at the neighbors.

We can approximate the derivatives with centered differences:

uxx ≈
uW − 2u0 + uE

h2
, uyy ≈

uN − 2u0 + uS

h2
.

Plugging this back into ∆u = 0 gives u0 =
uW + uN + uE + uS

4
, i.e., u0 is the average of its

four neighbors.
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Numerical solutions to Laplace’s equation (contin.)

Recall that we are trying to solve an inhomogeneous boundary value problem for Laplace’s
equation

∆u = 0 , u|∂G = f (x , y) 6= 0.

Claim

The homogeneous equation: ∆u = 0, where u = 0 on ∂G , has only the trivial solution
u0 = 0 for all (x , y) ∈ G .

Proof (sketch)

Let Ô be the lattice point at which u achieves its maximum value.

Since u0 =
uW + uN + uE + uS

4
, then u0 = uW = uN = uE = uS .

Repeating this, we see that all lattice points take the same value for u, and so u = 0.

By the result in Example B, the related inhomogeneous system for ∆u = 0, with arbitrary
(non-zero) boundary conditions has a unique solution. �
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