# Lecture 2.2: Applications of the rank-nullity theorem 

Matthew Macauley

School of Mathematical \& Statistical Sciences<br>Clemson University<br>http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

## Overview

In the last lecture, we learned about a fundamental result of linear maps.

## Rank-nullity theorem

Let $T: X \rightarrow U$ be a linear map. Then $\operatorname{dim} R_{T}+\operatorname{dim} N_{T}=\operatorname{dim} X$.

In this lecture, we will show how this theoretical result has surprising implications, involving polynomials, ODEs, and PDEs.

We will also use the following simple corollary from the previous lecture:

## Corollary B

Suppose $\operatorname{dim} X=\operatorname{dim} U<\infty$ and the only vector satisfying $T x=0$ is $x=0$. Then $R_{T}=U$.

## Polynomial interpolation

Let $X=\{p \in \mathbb{C}[x] \mid \operatorname{deg} p<n\}$ and $U=\mathbb{C}^{n}$.
Pick any distinct $s_{1}, \ldots, s_{n} \in \mathbb{C}$, and define

$$
T: X \longrightarrow U, \quad T: p \mapsto\left(p\left(s_{1}\right), \ldots, p\left(s_{n}\right)\right)
$$

Suppose $T p=0$ for some $p \in X$.

Then $p\left(s_{1}\right)=\cdots=p\left(s_{n}\right)=0$, which is impossible because $p$ has at most $n-1$ distinct roots.

Therefore $N_{T}=\{0\}$, and so Corollary $B$ implies that $R_{T}=U$.

## Average value of a polynomial

Let $X=\{p \in \mathbb{R}[x] \mid \operatorname{deg} p<n\}$ and $U=\mathbb{R}^{n}$.
Let $I_{1}, \ldots, I_{n} \subseteq \mathbb{R}$ be pairwise disjoint intervals.
The average value of $p$ over $I_{j}$ is

$$
\overline{p_{j}}:=\frac{1}{\left|l_{j}\right|} \int_{I_{j}} p(t) d t
$$

Define the linear function

$$
T: X \longrightarrow U, \quad T p=\left(\overline{p_{1}}, \ldots, \overline{p_{n}}\right)
$$

Suppose $T p=0$. Then $\overline{p_{j}}=0$ for all $j$, and so any nonzero $p$ must change sign in $I_{j}$.

But this would imply that $p$ has $n$ distinct roots, which is impossible.
Thus, $N_{T}=\{0\}$, and so $R_{T}=U$.

## Systems of equations

Our next two applications will rely on the following result from the previous lecture.

## Example B

Take $X=U=\mathbb{R}^{n}$, and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $\sum_{j=1}^{n} t_{i j} x_{j}=u_{i}$, for $i=1, \ldots, n$.
If the related homogeneous system of equations $\sum_{j=1}^{n} t_{i j} x_{j}=0$, for $i=1, \ldots, n$, has only the trivial solution $x_{1}=\cdots x_{n}=0$, then the inhomogeneous system $T$ has a unique solution.

Recall that this followed from:

## Corollary B

Suppose $\operatorname{dim} X=\operatorname{dim} U$ and the only vector satisfying $T x=0$ is $x=0$. Then $R_{T}=U$.

## ODEs: the method of undetermined coefficients

Consider the differential equation

$$
\underbrace{a y^{\prime \prime}+b y^{\prime}+c y}_{\text {homogeneous part }}=\underbrace{5 e^{3 t} \cos 4 t}_{\text {"forcing term", } f(t)}
$$

In an ODEs class, you learn that the general solution has the form $y(t)=y_{h}(t)+y_{p}(t)$.
Here, $y_{h}(t)$ is the general solution to the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$, i.e., the nullspace of

$$
L: \mathcal{C}^{\infty}(\mathbb{R}) \longrightarrow \mathcal{C}^{\infty}(\mathbb{R}), \quad L: y \longmapsto a y^{\prime \prime}+b y^{\prime}+c y
$$

If the forcing term $f(t)=5 e^{3 t} \cos 4 t$ doesn't solve the homogeneous equation, we can find a "particular solution" of the form $y_{p}(t)=A e^{3 t} \cos 4 t+B e^{3 t} \sin 4 t$.

But why does this work? Let $X=\operatorname{Span}\left(e^{3 t} \cos 4 t, e^{3 t} \sin 4 t\right)$.
The only solution to the homogeneous equation $L y=0$ in $X$ is $y=0$.
We are trying to solve the inhomogeneous equation $L y=f$, and $f \in X$.
By Example B , there is a unique $y_{p} \in X$ satisfying $L y_{p}=f$.

## PDEs: numerical solutions to Laplace's equation

Laplace's equation is $\Delta u=u_{x x}+u_{y y}=0$, where $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$ is a linear operator.
Solutions to Laplace's PDE ("harmonic functions") are the functions in the nullspace of $\Delta$.
If we fix the value of $u$ on the boundary of a region $G \subset \mathbb{R}^{2}$, the solution to the boundary value problem $\Delta u=0$ is as "flat as possible". [Think: plastic wrap stretched around $\partial G$.]

This models steady-state solutions to the heat equation PDE: $u_{t}=\Delta u$.
The finite difference method is a way to solve $\Delta u=0$ numerically, using a square lattice with mesh spacing $h>0$.

At a fixed lattice point $O$, let $u_{0}$ be the value of $u$ at $O$, and $u_{W}, u_{E}, u_{N}, u_{S}$ be the values at the neighbors.

We can approximate the derivatives with centered differences:

$$
u_{x x} \approx \frac{u_{W}-2 u_{0}+u_{E}}{h^{2}}, \quad u_{y y} \approx \frac{u_{N}-2 u_{0}+u_{S}}{h^{2}}
$$

Plugging this back into $\Delta u=0$ gives $u_{0}=\frac{u_{W}+u_{N}+u_{E}+u_{S}}{4}$, i.e., $u_{0}$ is the average of its four neighbors.

## Numerical solutions to Laplace's equation (contin.)

Recall that we are trying to solve an inhomogeneous boundary value problem for Laplace's equation

$$
\Delta u=0,\left.\quad u\right|_{\partial G}=f(x, y) \neq 0
$$

## Claim

The homogeneous equation: $\Delta u=0$, where $u=0$ on $\partial G$, has only the trivial solution $u_{0}=0$ for all $(x, y) \in G$.

## Proof (sketch)

Let $\hat{O}$ be the lattice point at which $u$ achieves its maximum value.
Since $u_{0}=\frac{u_{W}+u_{N}+u_{E}+u_{S}}{4}$, then $u_{0}=u_{W}=u_{N}=u_{E}=u_{S}$.
Repeating this, we see that all lattice points take the same value for $u$, and so $u=0$.
By the result in Example B, the related inhomogeneous system for $\Delta u=0$, with arbitrary (non-zero) boundary conditions has a unique solution.

