Lecture 2.3: Algebra of linear mappings

Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Basic definitions and properties

Definition

Let $S, T: X \rightarrow U$ be linear maps. Define

- T + S by (T + S)(x) = Tx + Sx for each $x \in X$.
- aT by (aT)(x) = T(ax) for each $x \in X$, $a \in K$.

Easy fact

The set of linear maps from $X \to U$, denoted Hom(X, U), or $\mathcal{L}(X, U)$, is a vector space.

Lemma 2.3 (HW)

If $T: X \to U$ and $S: U \to V$ are linear maps, then so is $(S \circ T): X \to V$.

Moreover, composition is distributive w.r.t. addition. That is, if $P, T: X \to U$ and $R, S: U \to V$, then

$$(R+S)\circ T=R\circ T+S\circ T,$$
 $S\circ (T+P)=S\circ T+S\circ P.$

Remarks

- We usually just write $S \circ T$ as just ST.
- In general, $ST \neq TS$ (note that TS may not even be defined).

Invertibility

Definition

A linear map T is invertible if it is 1–1 and onto (i.e., if it is an isomorphism). Denote the inverse by T^{-1} .

Exercise

If T is invertible, then TT^{-1} is the identity.

Proposition 2.4 (exercise)

Let $T: X \to U$ be linear.

(i) If T is linear, then so is T^{-1} .

(ii) If S and T are invertible and ST defined, then it is invertible with $(ST)^{-1} = T^{-1}S^{-1}$.

Examples

- (ix) Take $X = U = V = \mathbb{R}[t]$, with $T = \frac{d}{dt}$ and S = multiplication by t.
- (x) Take $X = U = V = \mathbb{R}^3$, with S a 90°-rotation around the x_1 axis, and T a 90°-rotation around the x_2 axis.

In both of these examples, S and T are linear with $ST \neq TS$. (Which are invertible?)

Some more advanced concepts

Definition

An endomorphism of X is a linear map from X to itself. Denote the set of endomorphisms of X by Hom(X, X) or $\mathcal{L}(X, X)$ or End(X).

Remarks

Hom(X, X) is a vector space, but we can also "multiply" vectors; it is an algebra.

It is an associative but noncommutative algebra, with unity I, satisfying Ix = x.

Hom(X, X) contains zero divisors: pairs S, T such that ST = 0 but neither S nor T is zero.

Proposition

If $A \in \text{Hom}(X, X)$ is a left inverse of $B \in \text{Hom}(X, X)$ [i.e., AB = I], then it is also a right inverse [i.e., BA = I].

Definition

The invertible elements of Hom(X, X) forms the general linear group, denoted $GL_n(K)$, where $n = \dim X$.

Every $S \in GL_n(K)$ defines a similarity transformation of Hom(X, X), sending $M \mapsto M_S := SMS^{-1}$, for each $M \in Hom(X, X)$. We say M and M_S are similar.

Similarity

Proposition 2.5

Every similarity transform is an automorphism ["structure-preserving bijection"] of Hom(X, X):

$$(kM)_{S} = kM_{S}, \qquad (M+N)_{S} = M_{S} + N_{S}, \qquad (MN)_{S} = M_{S}N_{S}.$$

Moreover, the set of similarity transforms forms a group under $(M_S)_T := M_{TS}$, called the inner automorphism group of $GL_n(K)$.

Proof

Proposition 2.6 (exercise) Similarity is an equivalence relation, i.e., it is: (i) Reflexive: $M \sim M$; (ii) Symmetric: $L \sim M$ implies $M \sim L$; (iii) Transitive: $L \sim M$ and $M \sim N$ implies $L \sim N$.

Last but not least

Proposition 2.7 (HW)

If either A or B in Hom(X, X) is invertible, then AB and BA are similar.

Given any $A \in \text{Hom}(X, X)$ and polynomial $p(s) = a_N s^N + \cdots + a_1 s + a_0$, consider the polynomial $p(A) = a_N A^N + \cdots + a_1 A + a_0 I$.

The set of polynomials in A is a commutative subalgebra of Hom(X, X). [to be revisited]

Miscellaneous definitions

- A linear map $P: X \to X$ is a projection if $P^2 = P$.
- The commutator of $A, B \in Hom(X, X)$ is [A, B] := AB BA, which is 0 iff A and B commute.

Examples (contin.)

(xii) If $X = \{f : \mathbb{R} \to \mathbb{R}, \text{ contin.}\}$, then the following maps $P, Q \in \text{Hom}(X, X)$ are projections:

$$(Pf)(x) = \frac{f(x) + f(-x)}{2}; \text{ this is the even part of } f.$$
$$(Qf)(x) = \frac{f(x) - f(-x)}{2}; \text{ this is the odd part of } f.$$

Note that f = Pf + Qf for any $f \in X$.