# Lecture 2.3: Algebra of linear mappings 

Matthew Macauley

School of Mathematical \& Statistical Sciences<br>Clemson University<br>http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

## Basic definitions and properties

## Definition

Let $S, T: X \rightarrow U$ be linear maps. Define

- $T+S$ by $(T+S)(x)=T x+S x$ for each $x \in X$.
- $a T$ by $(a T)(x)=T(a x)$ for each $x \in X, a \in K$.


## Easy fact

The set of linear maps from $X \rightarrow U$, denoted $\operatorname{Hom}(X, U)$, or $\mathscr{L}(X, U)$, is a vector space.
Lemma 2.3 (HW)
If $T: X \rightarrow U$ and $S: U \rightarrow V$ are linear maps, then so is $(S \circ T): X \rightarrow V$.
Moreover, composition is distributive w.r.t. addition. That is, if $P, T: X \rightarrow U$ and $R, S: U \rightarrow V$, then

$$
(R+S) \circ T=R \circ T+S \circ T, \quad S \circ(T+P)=S \circ T+S \circ P .
$$

## Remarks

- We usually just write $S \circ T$ as just $S T$.
- In general, $S T \neq T S$ (note that $T S$ may not even be defined).


## Invertibility

## Definition

A linear map $T$ is invertible if it is $1-1$ and onto (i.e., if it is an isomorphism). Denote the inverse by $T^{-1}$.

## Exercise

If $T$ is invertible, then $T T^{-1}$ is the identity.

## Proposition 2.4 (exercise)

Let $T: X \rightarrow U$ be linear.
(i) If $T$ is linear, then so is $T^{-1}$.
(ii) If $S$ and $T$ are invertible and $S T$ defined, then it is invertible with $(S T)^{-1}=T^{-1} S^{-1}$.

## Examples

(ix) Take $X=U=V=\mathbb{R}[t]$, with $T=\frac{d}{d t}$ and $S=$ multiplication by $t$.
(x) Take $X=U=V=\mathbb{R}^{3}$, with $S$ a $90^{\circ}$-rotation around the $x_{1}$ axis, and $T$ a $90^{\circ}$-rotation around the $x_{2}$ axis.

In both of these examples, $S$ and $T$ are linear with $S T \neq T S$. (Which are invertible?)

## Some more advanced concepts

## Definition

An endomorphism of $X$ is a linear map from $X$ to itself. Denote the set of endomorphisms of $X$ by $\operatorname{Hom}(X, X)$ or $\mathscr{L}(X, X)$ or $\operatorname{End}(X)$.

## Remarks

Hom $(X, X)$ is a vector space, but we can also "multiply" vectors; it is an algebra. It is an associative but noncommutative algebra, with unity $I$, satisfying $l x=x$. $\operatorname{Hom}(X, X)$ contains zero divisors: pairs $S, T$ such that $S T=0$ but neither $S$ nor $T$ is zero.

## Proposition

If $A \in \operatorname{Hom}(X, X)$ is a left inverse of $B \in \operatorname{Hom}(X, X)$ [i.e., $A B=I$ ], then it is also a right inverse [i.e., $B A=I$ ].

## Definition

The invertible elements of $\operatorname{Hom}(X, X)$ forms the general linear group, denoted $\mathrm{GL}_{n}(K)$, where $n=\operatorname{dim} X$.

Every $S \in \mathrm{GL}_{n}(K)$ defines a similarity transformation of $\operatorname{Hom}(X, X)$, sending $M \longmapsto M_{S}:=S M S^{-1}$, for each $M \in \operatorname{Hom}(X, X)$. We say $M$ and $M_{S}$ are similar.

## Similarity

## Proposition 2.5

Every similarity transform is an automorphism ["structure-preserving bijection"] of $\operatorname{Hom}(X, X)$ :

$$
(k M)_{S}=k M_{S}, \quad(M+N)_{S}=M_{S}+N_{S}, \quad(M N)_{S}=M_{S} N_{S} .
$$

Moreover, the set of similarity transforms forms a group under $\left(M_{S}\right)_{T}:=M_{T S}$, called the inner automorphism group of $G L_{n}(K)$.

## Proof

## Proposition 2.6 (exercise)

Similarity is an equivalence relation, i.e., it is:
(i) Reflexive: $M \sim M$;
(ii) Symmetric: $L \sim M$ implies $M \sim L$;
(iii) Transitive: $L \sim M$ and $M \sim N$ implies $L \sim N$.

## Last but not least

## Proposition 2.7 (HW)

If either $A$ or $B$ in $\operatorname{Hom}(X, X)$ is invertible, then $A B$ and $B A$ are similar.

Given any $A \in \operatorname{Hom}(X, X)$ and polynomial $p(s)=a_{N} s^{N}+\cdots+a_{1} s+a_{0}$, consider the polynomial $p(A)=a_{N} A^{N}+\cdots+a_{1} A+a_{0} I$.

The set of polynomials in $A$ is a commutative subalgebra of $\operatorname{Hom}(X, X)$. [to be revisited]

## Miscellaneous definitions

- A linear map $P: X \rightarrow X$ is a projection if $P^{2}=P$.
- The commutator of $A, B \in \operatorname{Hom}(X, X)$ is $[A, B]:=A B-B A$, which is 0 iff $A$ and $B$ commute.


## Examples (contin.)

(xii) If $X=\{f: \mathbb{R} \rightarrow \mathbb{R}$, contin. $\}$, then the following maps $P, Q \in \operatorname{Hom}(X, X)$ are projections:

- $(P f)(x)=\frac{f(x)+f(-x)}{2}$; this is the even part of $f$.
- $(Q f)(x)=\frac{f(x)-f(-x)}{2}$; this is the odd part of $f$.

Note that $f=P f+Q f$ for any $f \in X$.

