Lecture 3.4: The determinant of a linear map

Matthew Macauley

School of Mathematical \& Statistical Sciences
Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Symmetric, skew-symmetric, and alternating forms

Throughout, $\operatorname{dim} X=n<\infty$. Recall that a k-linear form $f: X \times \cdots \times X \rightarrow K$ is:

- symmetric if $\pi f=f$ for all $\pi \in S_{k}$
- skew-symmetric if $\tau f=-f$ for all transpositions $\tau \in S_{k}$
- alternating if $f\left(x_{1}, \ldots, x_{k}\right)=0$ whenever $x_{i}=x_{j}(i \neq j)$.

All of these are subspaces of $\mathcal{T}^{k}\left(X^{\prime}\right)$, the space of k-linear forms. What are their dimensions?

Goal

Show that the subspace of alternating n-linear forms is 1 -dimensional, by verifying

- any two alternating n-linear forms are linearly dependent (see previous lecture)
- there is a non-zero alternating n-linear form.

The determinant of $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the unique alternating n-linear form satisfying $T\left(e_{1}, \ldots, e_{n}\right)=1$.

But we'd still like a definition that doesn't refer to the choice of basis...

The dimension of the subspace of alternating n-linear forms is ≥ 1

Proposition 3.5
There is a nonzero alternating n-linear form.

Determinants, at last

Let $T: X \rightarrow X$ be linear. For an alternating n-linear f, define a new alternating n-linear form

$$
\bar{T} f: X^{n} \longrightarrow K, \quad(\bar{T} f)\left(x_{1}, \ldots, x_{n}\right)=f\left(T_{x_{1}}, \ldots, T x_{n}\right)
$$

That is, T induces a map \bar{T} on the (1-dimensional) space of alternating n-linear forms:

$$
f \longmapsto \bar{T} f .
$$

But any linear map on a 1-dimensional space is just scalar multiplication, $x \mapsto \lambda x$. Therefore,

$$
\bar{T}: f \longmapsto \lambda f .
$$

The scalar λ is called the determinant of T. It satisfies the following.

Universal property of the determinant

Given a linear map $T: X \rightarrow X$, there exists a unique scalar λ such that for every alternating n-linear form f,

$$
f\left(T x_{1}, \ldots, T x_{n}\right)=\lambda f\left(x_{1}, \ldots, x_{n}\right)
$$

A few basic properties

If $T x=c x$, then

$$
(\bar{T} f)\left(x_{1}, \ldots, x_{n}\right)=f\left(T_{x_{1}}, \ldots, T_{x_{n}}\right)=f\left(c x_{1}, \ldots, c x_{n}\right)=c^{n} f\left(x_{1}, \ldots, x_{n}\right)
$$

Thus, $\operatorname{det} T=c^{n}$.
It follows that $\operatorname{det} 0=0$ and $\operatorname{det}(I d)=1$.

Proposition 3.6

For any two linear maps $A, B: X \rightarrow X$,

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B) .
$$

Corollary 3.7

If $A: X \rightarrow X$ is invertible, then $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1} \neq 0$.

