Lecture 3.6: Minors and cofactors

Matthew Macauley

School of Mathematical \& Statistical Sciences Clemson University
http://www.math.clemson.edu/~macaule/

Math 8530, Advanced Linear Algebra

Definitions and motivation

Lemma 3.10

Let $A=\left[c_{1}, \ldots, c_{n}\right]$ be an $n \times n$ matrix, and define B by adding $k c_{i}$ to the $j^{\text {th }}$ column, for $i \neq j$. Then $\operatorname{det} A=\operatorname{det} B$.

Definition

Let A be an $n \times n$ matrix, and let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix formed by removing the $i^{\text {th }}$ row and $j^{\text {th }}$ column.

- The (i, j) minor of A is $M_{i j}:=\operatorname{det} A_{i j}$.
- The (i, j) cofactor of A is $C_{i j}:=(-1)^{i+j} \operatorname{det} A_{i j}$.

Lemma 3.11

Let A be an $n \times n$ matrix with first column e e i.e., $A=\left[\begin{array}{cc}1 & - \\ 0 & A_{11}\end{array}\right]$. Then $\operatorname{det} A=C_{11}$.

Corollary 3.12

Let A be a matrix whose $j^{\text {th }}$ column is e_{i}. Then

$$
\operatorname{det} A=C_{i j}
$$

Laplace expansion

Recall: If the $j^{\text {th }}$ column of A is e_{i}, then $\operatorname{det} A=C_{i j}$.

Theorem (Laplace expansion)

The determinant of A is

$$
\operatorname{det} A=\sum_{i=1}^{n} a_{i j} C_{i j},
$$

for any fixed $j=1, \ldots, n$.

Systems of equations

Consider an invertible matrix, written as an n-tuple of its column vectors:

$$
A=\left(a_{1}, \ldots, a_{n}\right)=\left(A e_{1}, \ldots, A e_{n}\right)
$$

The system of equations $A x=u$, with $x=\sum_{j=1}^{n} x_{j} e_{j}$ can be written

$$
\sum_{j=1}^{n} x_{j} a_{j}=u
$$

For each k, define the matrix

$$
A_{k}=\left(a_{1}, \ldots, a_{k-1}, u, a_{k+1}, \ldots, a_{n}\right)
$$

and let's compute its determinant.

A formula for A^{-1}

Theorem (Cramer's rule)

The solution to the system of equations $A x=u$, with $x=\sum_{j=1}^{n} x_{j} e_{j}$ is

$$
x_{k}=\frac{1}{\operatorname{det} A} \sum_{i=1}^{n} C_{i k} u_{i}
$$

Theorem 3.13
If A is invertible, then the (i, j)-entry of its inverse A^{-1} is

$$
\left(A^{-1}\right)_{i j}=\frac{C_{j i}}{\operatorname{det} A} .
$$

